Documentation Verification Report

SingleHomology

📁 Source: Mathlib/Algebra/Homology/SingleHomology.lean

Statistics

MetricCount
DefinitionshomologyFunctorSingleIso, singleObjCyclesSelfIso, singleObjHomologySelfIso, singleObjOpcyclesSelfIso
4
TheoremsexactAt_succ_single_obj, exactAt_succ_single_obj, exactAt_single_obj, homologyFunctorSingleIso_hom_app, homologyFunctorSingleIso_inv_app, homologyι_singleObjOpcyclesSelfIso_inv, homologyι_singleObjOpcyclesSelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom, homologyπ_singleObjHomologySelfIso_hom_assoc, instHasHomologyObjSingle, isZero_single_obj_homology, pOpcycles_singleObjOpcyclesSelfIso_inv, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_hom, singleObjCyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_hom_naturality_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_homologyπ, singleObjCyclesSelfIso_inv_homologyπ_assoc, singleObjCyclesSelfIso_inv_iCycles, singleObjCyclesSelfIso_inv_iCycles_assoc, singleObjCyclesSelfIso_inv_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, singleObjHomologySelfIso_hom_naturality, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjHomologySelfIso_inv_homologyι, singleObjHomologySelfIso_inv_homologyι_assoc, singleObjHomologySelfIso_inv_naturality, singleObjHomologySelfIso_inv_naturality_assoc, singleObjOpcyclesSelfIso_hom, singleObjOpcyclesSelfIso_hom_assoc, singleObjOpcyclesSelfIso_hom_naturality, singleObjOpcyclesSelfIso_hom_naturality_assoc, singleObjOpcyclesSelfIso_inv_naturality, singleObjOpcyclesSelfIso_inv_naturality_assoc
41
Total45

ChainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt_succ_single_obj 📖mathematicalHomologicalComplex.ExactAt
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
HomologicalComplex.exactAt_single_obj
AddRightCancelSemigroup.toIsRightCancelAdd

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt_succ_single_obj 📖mathematicalHomologicalComplex.ExactAt
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
HomologicalComplex.exactAt_single_obj
AddRightCancelSemigroup.toIsRightCancelAdd

HomologicalComplex

Definitions

NameCategoryTheorems
homologyFunctorSingleIso 📖CompOp
2 mathmath: homologyFunctorSingleIso_inv_app, homologyFunctorSingleIso_hom_app
singleObjCyclesSelfIso 📖CompOp
16 mathmath: singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_iCycles, singleObjCyclesSelfIso_inv_homologyπ, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_homologyπ_assoc, homologyπ_singleObjHomologySelfIso_hom, singleObjCyclesSelfIso_inv_iCycles_assoc, singleObjCyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_naturality, singleObjCyclesSelfIso_hom_naturality_assoc, singleObjCyclesSelfIso_hom, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv
singleObjHomologySelfIso 📖CompOp
18 mathmath: singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, homologyι_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_inv_homologyπ, homologyι_singleObjOpcyclesSelfIso_inv, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, singleObjHomologySelfIso_inv_homologyι_assoc, singleObjCyclesSelfIso_inv_homologyπ_assoc, homologyπ_singleObjHomologySelfIso_hom, homologyFunctorSingleIso_inv_app, singleObjHomologySelfIso_hom_naturality, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, singleObjHomologySelfIso_inv_naturality, singleObjHomologySelfIso_inv_homologyι, homologyFunctorSingleIso_hom_app, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv
singleObjOpcyclesSelfIso 📖CompOp
16 mathmath: singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv, singleObjOpcyclesSelfIso_hom, homologyι_singleObjOpcyclesSelfIso_inv_assoc, homologyι_singleObjOpcyclesSelfIso_inv, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjHomologySelfIso_inv_homologyι_assoc, singleObjOpcyclesSelfIso_inv_naturality, singleObjOpcyclesSelfIso_hom_naturality_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjOpcyclesSelfIso_inv_naturality_assoc, singleObjHomologySelfIso_inv_homologyι, singleObjOpcyclesSelfIso_hom_assoc, singleObjOpcyclesSelfIso_hom_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt_single_obj 📖mathematicalExactAt
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
CategoryTheory.ShortComplex.exact_of_isZero_X₂
isZero_single_obj_X
homologyFunctorSingleIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
single
homologyFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
homologyFunctorSingleIso
homology
CategoryTheory.Functor.obj
singleObjHomologySelfIso
homologyFunctorSingleIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
single
homologyFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
homologyFunctorSingleIso
homology
CategoryTheory.Functor.obj
singleObjHomologySelfIso
homologyι_singleObjOpcyclesSelfIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcycles
homologyι
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
CategoryTheory.Iso.hom
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
singleObjHomologySelfIso_inv_homologyι_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Iso.inv_hom_id
homologyι_singleObjOpcyclesSelfIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcycles
homologyι
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
CategoryTheory.Iso.hom
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_singleObjOpcyclesSelfIso_inv
homologyπ_singleObjHomologySelfIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homology
homologyπ
CategoryTheory.Iso.hom
singleObjHomologySelfIso
singleObjCyclesSelfIso
instHasHomologyObjSingle
isoHomologyπ_hom_inv_id_assoc
homologyπ_singleObjHomologySelfIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homology
homologyπ
CategoryTheory.Iso.hom
singleObjHomologySelfIso
singleObjCyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_singleObjHomologySelfIso_hom
instHasHomologyObjSingle 📖mathematicalHasHomology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
CategoryTheory.ShortComplex.hasHomology_of_zeros
isZero_single_obj_homology 📖mathematicalCategoryTheory.Limits.IsZero
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
instHasHomologyObjSingle
exactAt_single_obj
pOpcycles_singleObjOpcyclesSelfIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
opcycles
instHasHomologyObjSingle
pOpcycles
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
CategoryTheory.Iso.hom
singleObjXSelf
instHasHomologyObjSingle
isIso_iCycles
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
homology_π_ι_assoc
homologyι_singleObjOpcyclesSelfIso_inv
homologyπ_singleObjHomologySelfIso_hom
singleObjCyclesSelfIso_hom
pOpcycles_singleObjOpcyclesSelfIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
opcycles
instHasHomologyObjSingle
pOpcycles
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
CategoryTheory.Iso.hom
singleObjXSelf
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_singleObjOpcyclesSelfIso_inv
singleObjCyclesSelfIso_hom 📖mathematicalCategoryTheory.Iso.hom
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
singleObjCyclesSelfIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
iCycles
singleObjXSelf
instHasHomologyObjSingle
singleObjCyclesSelfIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
X
iCycles
singleObjXSelf
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_hom
singleObjCyclesSelfIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
cyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
instMonoICycles
cyclesMap_i
single_map_f_self
iCyclesIso_inv_hom_id
singleObjCyclesSelfIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
cyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_hom_naturality
singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcycles
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
singleObjOpcyclesSelfIso
X
iCycles
pOpcycles
instHasHomologyObjSingle
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
opcycles
singleObjOpcyclesSelfIso
X
iCycles
pOpcycles
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom
singleObjCyclesSelfIso_inv_homologyπ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homology
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
homologyπ
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
singleObjCyclesSelfIso_inv_homologyπ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
homology
homologyπ
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_inv_homologyπ
singleObjCyclesSelfIso_inv_iCycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
X
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
iCycles
singleObjXSelf
instHasHomologyObjSingle
CategoryTheory.Category.assoc
iCyclesIso_inv_hom_id
CategoryTheory.Category.comp_id
singleObjCyclesSelfIso_inv_iCycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
X
iCycles
singleObjXSelf
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_inv_iCycles
singleObjCyclesSelfIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
cyclesMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
singleObjCyclesSelfIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
singleObjCyclesSelfIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjCyclesSelfIso
cyclesMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjCyclesSelfIso_inv_naturality
singleObjHomologySelfIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.cancel_epi
instEpiHomologyπ
homologyπ_naturality_assoc
homologyπ_singleObjHomologySelfIso_hom
singleObjCyclesSelfIso_hom_naturality
homologyπ_singleObjHomologySelfIso_hom_assoc
singleObjHomologySelfIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjHomologySelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjHomologySelfIso_hom_naturality
singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
homology
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
CategoryTheory.Iso.inv
singleObjHomologySelfIso
homologyπ
instHasHomologyObjSingle
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
homologyπ_singleObjHomologySelfIso_hom
singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjCyclesSelfIso
homology
CategoryTheory.Iso.inv
singleObjHomologySelfIso
homologyπ
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv
singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcycles
CategoryTheory.Iso.hom
singleObjHomologySelfIso
singleObjOpcyclesSelfIso
homologyι
instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
singleObjHomologySelfIso_inv_homologyι
singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjHomologySelfIso
opcycles
singleObjOpcyclesSelfIso
homologyι
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom
singleObjHomologySelfIso_inv_homologyι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcycles
CategoryTheory.Iso.inv
singleObjHomologySelfIso
homologyι
CategoryTheory.Iso.hom
singleObjOpcyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc
homology_π_ι
singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom
singleObjHomologySelfIso_inv_homologyι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjHomologySelfIso
opcycles
homologyι
CategoryTheory.Iso.hom
singleObjOpcyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjHomologySelfIso_inv_homologyι
singleObjHomologySelfIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjHomologySelfIso
homologyMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
singleObjHomologySelfIso_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
singleObjHomologySelfIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.inv
singleObjHomologySelfIso
homologyMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjHomologySelfIso_inv_naturality
singleObjOpcyclesSelfIso_hom 📖mathematicalCategoryTheory.Iso.hom
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
singleObjOpcyclesSelfIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
singleObjXSelf
pOpcycles
instHasHomologyObjSingle
singleObjOpcyclesSelfIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjOpcyclesSelfIso
X
CategoryTheory.Iso.inv
singleObjXSelf
pOpcycles
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjOpcyclesSelfIso_hom
singleObjOpcyclesSelfIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjOpcyclesSelfIso
opcyclesMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc
p_opcyclesMap
single_map_f_self
CategoryTheory.Category.assoc
singleObjCyclesSelfIso_hom
singleObjOpcyclesSelfIso_hom
singleObjOpcyclesSelfIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
CategoryTheory.Iso.hom
singleObjOpcyclesSelfIso
opcyclesMap
CategoryTheory.Functor.map
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjOpcyclesSelfIso_hom_naturality
singleObjOpcyclesSelfIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
singleObjOpcyclesSelfIso_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
singleObjOpcyclesSelfIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
instHasHomologyObjSingle
opcyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
singleObjOpcyclesSelfIso
instHasHomologyObjSingle
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
singleObjOpcyclesSelfIso_inv_naturality

---

← Back to Index