Documentation Verification Report

IsPrimePow

📁 Source: Mathlib/Algebra/IsPrimePow.lean

Statistics

MetricCount
DefinitionsIsPrimePow, instDecidableIsPrimePowNat
2
Theoremsdvd, ne_one, ne_zero, not_unit, one_lt, pos, pow, two_le, not_isPrimePow, isPrimePow, isPrimePow, isPrimePow_def, isPrimePow_iff_pow_succ, isPrimePow_nat_iff, isPrimePow_nat_iff_bounded, isPrimePow_nat_iff_bounded_log, isPrimePow_nat_iff_bounded_log_minFac, not_isPrimePow_one, not_isPrimePow_zero
19
Total21

IsPrimePow

Theorems

NameKindAssumesProvesValidatesDepends On
dvd 📖IsPrimePow
Nat.instCommMonoidWithZero
ne_one 📖IsPrimePownot_isPrimePow_one
ne_zero 📖IsPrimePownot_isPrimePow_zero
not_unit 📖mathematicalIsPrimePowIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Iff.not
isUnit_pow_iff
LT.lt.ne'
Prime.not_unit
one_lt 📖IsPrimePow
Nat.instCommMonoidWithZero
two_le
pos 📖IsPrimePow
Nat.instCommMonoidWithZero
pos_of_gt
Nat.instCanonicallyOrderedAdd
two_le
pow 📖mathematicalIsPrimePowMonoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Ne.bot_lt
pow_mul'
two_le 📖IsPrimePow
Nat.instCommMonoidWithZero
not_isPrimePow_zero
IsDomain.to_noZeroDivisors
Nat.instIsDomain
not_isPrimePow_one
le_add_self
Nat.instCanonicallyOrderedAdd

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
not_isPrimePow 📖mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
IsPrimePowIsPrimePow.not_unit

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimePow 📖mathematicalNat.PrimeIsPrimePow
Nat.instCommMonoidWithZero
Prime.isPrimePow
Nat.prime_iff

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimePow 📖mathematicalPrimeIsPrimePowzero_lt_one
Nat.instZeroLEOneClass
pow_one

(root)

Definitions

NameCategoryTheorems
IsPrimePow 📖MathDef
37 mathmath: Nat.squarefree_and_prime_pow_iff_prime, Cardinal.isPrimePow_iff, FiniteField.isPrimePow_card, isPrimePow_iff_card_primeFactors_eq_one, IsUnit.not_isPrimePow, isPrimePow_iff_factorization_eq_single, Field.nonempty_iff, isPrimePow_iff_pow_succ, isPrimePow_nat_iff, Chebyshev.sum_PrimePow_eq_sum_sum, Nat.Primes.prodNatEquiv_apply, Nat.disjoint_divisors_filter_isPrimePow, isPrimePow_nat_iff_bounded, DivisorChain.isPrimePow_of_has_chain, ArithmeticFunction.vonMangoldt_pos_iff, Fintype.isPrimePow_card_of_field, isPrimePow_of_minFac_pow_factorization_eq, ArithmeticFunction.vonMangoldt_ne_zero_iff, not_isPrimePow_zero, isPrimePow_nat_iff_bounded_log, Fintype.nonempty_field_iff, Nat.Primes.coe_prodNatEquiv_apply, ArithmeticFunction.cardDistinctFactors_eq_one_iff, isPrimePow_iff_unique_prime_dvd, exists_ordCompl_eq_one_iff_isPrimePow, ArithmeticFunction.vonMangoldt_apply, not_isPrimePow_one, Prime.isPrimePow, Nat.Prime.isPrimePow, isPrimePow_def, ArithmeticFunction.vonMangoldt_eq_zero_iff, isPrimePow_nat_iff_bounded_log_minFac, isPrimePow_pow_iff, Nat.not_isPrimePow_iff_nontrivial_of_two_le, Nat.mul_divisors_filter_prime_pow, isPrimePow_iff_minFac_pow_factorization_eq, charP_zero_or_prime_power
instDecidableIsPrimePowNat 📖CompOp
4 mathmath: Chebyshev.sum_PrimePow_eq_sum_sum, Nat.disjoint_divisors_filter_isPrimePow, ArithmeticFunction.vonMangoldt_apply, Nat.mul_divisors_filter_prime_pow

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimePow_def 📖mathematicalIsPrimePow
Prime
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
isPrimePow_iff_pow_succ 📖mathematicalIsPrimePow
Prime
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
isPrimePow_def
Nat.succ_pos'
isPrimePow_nat_iff 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
isPrimePow_nat_iff_bounded 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
isPrimePow_nat_iff
pow_one
LT.lt.le
Nat.Prime.one_lt
isPrimePow_nat_iff_bounded_log 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.log
Monoid.toNatPow
Nat.instMonoid
Nat.Prime
isPrimePow_nat_iff
Nat.log_pow
Nat.log_mono
Nat.AtLeastTwo.prop
Nat.instAtLeastTwoHAddOfNat
Nat.Prime.two_le
isPrimePow_nat_iff_bounded_log_minFac 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.log
Monoid.toNatPow
Nat.instMonoid
Nat.minFac
isPrimePow_nat_iff_bounded_log
eq_or_ne
Nat.log_one_right
Nat.instCanonicallyOrderedAdd
pow_zero
Nat.minFac_one
one_pow
Nat.Prime.pow_minFac
LT.lt.ne'
Nat.minFac_le
not_isPrimePow_one 📖mathematicalIsPrimePow
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
IsUnit.not_isPrimePow
isUnit_one
not_isPrimePow_zero 📖mathematicalIsPrimePow
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors

---

← Back to Index