Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/LieRinehartAlgebra/Defs.lean

Statistics

MetricCount
DefinitionsLieRinehartAlgebra, anchor, comp, id, instCoeFunForall, toLieHom, toLinearMap', Β«term_→ₗ⁅_⁆_Β», LieRinehartRing
9
Theoremsanchor_derivation, apply_lie, apply_lie', map_smul_apply, map_smul_apply', toLinearMap'_apply, instDerivation, instLieRinehartRingDerivation, toIsScalarTower, toLieModule, leibniz_mul_right, leibniz_smul_right, lie_smul_eq_mul
13
Total22

LieRinehartAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
instDerivation πŸ“–mathematicalβ€”LieRinehartAlgebra
Derivation
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LieAlgebra.toModule
LieRing.ofAssociativeRing
CommRing.toRing
LieAlgebra.ofAssociativeAlgebra
Algebra.id
Derivation.instLieRing
Derivation.instModule
CommSemiring.toSemiring
Algebra.to_smulCommClass
Derivation.instLieRingModule
instLieRinehartRingDerivation
Derivation.instLieAlgebra
β€”Algebra.to_smulCommClass
instLieRinehartRingDerivation
Derivation.instIsScalarTower
IsScalarTower.right
Derivation.instLieModule
instLieRinehartRingDerivation πŸ“–mathematicalβ€”LieRinehartRing
Derivation
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LieAlgebra.toModule
LieRing.ofAssociativeRing
CommRing.toRing
LieAlgebra.ofAssociativeAlgebra
Algebra.id
Derivation.instLieRing
Derivation.instModule
CommSemiring.toSemiring
Algebra.to_smulCommClass
Derivation.instLieRingModule
β€”Algebra.to_smulCommClass
Derivation.leibniz
AddLeftCancelSemigroup.toIsLeftCancelAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Derivation.ext
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
toIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
β€”β€”
toLieModule πŸ“–mathematicalβ€”LieModule
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
CommRing.toRing
LieAlgebra.toModule
LieAlgebra.ofAssociativeAlgebra
β€”β€”

LieRinehartAlgebra.Hom

Definitions

NameCategoryTheorems
anchor πŸ“–CompOp
1 mathmath: anchor_derivation
comp πŸ“–CompOpβ€”
id πŸ“–CompOp
1 mathmath: anchor_derivation
instCoeFunForall πŸ“–CompOpβ€”
toLieHom πŸ“–CompOp
5 mathmath: map_smul_apply', map_smul_apply, apply_lie', toLinearMap'_apply, apply_lie
toLinearMap' πŸ“–CompOp
1 mathmath: toLinearMap'_apply
Β«term_→ₗ⁅_⁆_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
anchor_derivation πŸ“–mathematicalβ€”anchor
Derivation
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LieAlgebra.toModule
LieRing.ofAssociativeRing
CommRing.toRing
LieAlgebra.ofAssociativeAlgebra
Algebra.id
Derivation.instLieRing
Derivation.instModule
CommSemiring.toSemiring
Algebra.to_smulCommClass
Derivation.instLieRingModule
Derivation.instLieAlgebra
LieRinehartAlgebra.instLieRinehartRingDerivation
LieRinehartAlgebra.instDerivation
id
β€”Algebra.to_smulCommClass
LieRinehartAlgebra.instLieRinehartRingDerivation
LieRinehartAlgebra.instDerivation
apply_lie πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
CommRing.toRing
LieHom
LieHom.instFunLike
toLieHom
β€”apply_lie'
apply_lie' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
CommRing.toRing
LieHom
LieHom.instFunLike
toLieHom
β€”β€”
map_smul_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AlgHom
AlgHom.funLike
β€”map_smul_apply'
map_smul_apply' πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AlgHom
AlgHom.funLike
β€”β€”
toLinearMap'_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom.toRingHom
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.instFunLike
toLinearMap'
LieHom
LieHom.instFunLike
toLieHom
β€”β€”

LieRinehartRing

Theorems

NameKindAssumesProvesValidatesDepends On
leibniz_mul_right πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”β€”
leibniz_smul_right πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LieRing.ofAssociativeRing
CommRing.toRing
β€”β€”
lie_smul_eq_mul πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
CommRing.toRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”

(root)

Definitions

NameCategoryTheorems
LieRinehartAlgebra πŸ“–CompData
1 mathmath: LieRinehartAlgebra.instDerivation
LieRinehartRing πŸ“–CompData
1 mathmath: LieRinehartAlgebra.instLieRinehartRingDerivation

---

← Back to Index