Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Lie/Basic.lean

Statistics

MetricCount
DefinitionsIsLieTower, LieAlgebra, toModule, LieEquiv, hasCoeToLieHom, hasCoeToLinearEquiv, instEquivLike, instInhabited, instOne, invFun, ofBijective, refl, toLieHom, toLinearEquiv, trans, LieHom, comp, id, instCoeLinearMapId, instFunLike, instInhabited, instOne, instZero, inverse, toLinearMap, LieModule, LieModuleEquiv, hasCoeToEquiv, hasCoeToLieModuleHom, hasCoeToLinearEquiv, instEquivLike, instInhabited, instOne, invFun, refl, toEquiv, toLieModuleHom, toLinearEquiv, trans, LieModuleHom, comp, hasNSMul, hasZSMul, id, instAdd, instAddCommGroup, instCoeOutLinearMapId, instFunLike, instInhabited, instModule, instNeg, instOne, instSMul, instSub, instZero, inverse, toLinearMap, LieRing, instLieAlgebra, toAddCommGroup, toBracket, toNonUnitalNonAssocRing, LieRingModule, compLieHom, toBracket, toEnd, instLieRingModule, instLieRingModule, lieRingSelfModule, Β«term_→ₗ⁅_,_⁆_Β», Β«term_→ₗ⁅_⁆_Β», Β«term_≃ₗ⁅_,_⁆_Β», Β«term_≃ₗ⁅_⁆_Β»
73
Theoremsleibniz_lie, ext, ext_iff, lie_smul, toModule_injective, apply_symm_apply, bijective, coe_coe, coe_injective, coe_toLieHom, coe_toLinearEquiv, ext, ext_iff, injective, instLinearEquivClass, left_inv, map_lie, ofBijective_invFun, ofBijective_toFun, one_apply, refl_apply, refl_symm, right_inv, self_trans_symm, surjective, symm_apply_apply, symm_bijective, symm_symm, symm_trans, symm_trans_self, toLinearEquiv_injective, toLinearEquiv_mk, trans_apply, coe_comp, coe_id, coe_injective, coe_mk, coe_one, coe_toLinearMap, coe_zero, comp_apply, comp_id, congr_fun, ext, ext_iff, id_apply, id_comp, instLinearMapClass, lie_apply, map_add, map_lie, map_lie', map_neg, map_smul, map_sub, map_zero, mk_coe, one_apply, toFun_eq_coe, toLinearMap_comp, zero_apply, compLieHom, lie_smul, smul_lie, apply_eq_iff_eq_symm_apply, apply_symm_apply, coe_coe, coe_mk, coe_toLieModuleHom, coe_toLinearEquiv, ext, ext_iff, injective, instLinearEquivClass, left_inv, one_apply, refl_apply, right_inv, self_trans_symm, surjective, symm_apply_apply, symm_bijective, symm_symm, symm_trans, symm_trans_self, toEquiv_injective, toEquiv_mk, trans_apply, add_apply, coe_add, coe_comp, coe_id, coe_injective, coe_linear_mk, coe_mk, coe_neg, coe_nsmul, coe_smul, coe_sub, coe_toLinearMap, coe_zero, coe_zsmul, comp_apply, congr_fun, ext, ext_iff, id_apply, instLinearMapClass, map_add, map_lie, map_lie', map_lieβ‚‚, map_neg, map_smul, map_sub, map_zero, mk_coe, neg_apply, nsmul_apply, smul_apply, sub_apply, toLinearMap_comp, zero_apply, zsmul_apply, add_lie, leibniz_lie, lie_add, lie_self, add_lie, compLieHom_apply, leibniz_lie, lie_add, toEnd_apply_apply, instLieModule, instLieModule, lie_apply, add_lie, instIsLieTower, instLieModuleInt, instSubsingletonLieAlgebraRat, leibniz_lie, lieAlgebraSelfModule, lie_add, lie_jacobi, lie_lie, lie_neg, lie_nsmul, lie_self, lie_skew, lie_smul, lie_sub, lie_sum, lie_swap_lie, lie_zero, lie_zsmul, neg_lie, nsmul_lie, smul_lie, sub_lie, sum_lie, sum_lie_sum, zero_lie, zsmul_lie
163
Total236

IsLieTower

Theorems

NameKindAssumesProvesValidatesDepends On
leibniz_lie πŸ“–mathematicalβ€”Bracket.bracketβ€”β€”

LieAlgebra

Definitions

NameCategoryTheorems
toModule πŸ“–CompOp
459 mathmath: LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map, IsKilling.rootSystem_toLinearMap_apply, Extension.incl_apply_mem_ker, IsKilling.iInf_ker_weight_eq_bot, LieDerivation.lie_der_ad_eq_ad_der, LieSubalgebra.top_toSubmodule, LieDerivation.instNoetherian, LieDerivation.ad_apply_lieDerivation, LieDerivation.iterate_apply_lie, LieIdeal.map_bracket_le, LieDerivation.IsKilling.instIsKilling_range_ad, abelian_radical_of_hasTrivialRadical, IsKilling.restrict_killingForm_eq_sum, LieIdeal.comap_incl_eq_top, derivedLength_zero, LieSubmodule.lowerCentralSeries_tensor_eq_baseChange, LieIdeal.restrict_killingForm, LieIdeal.coe_bracket_of_module, LieModule.traceForm_eq_sum_genWeightSpaceOf, IsKilling.isCompl_ker_weight_span_coroot, finrank_engel, LieModule.traceForm_eq_sum_finrank_nsmul', LieSubalgebra.mem_map_submodule, isSolvable_iff_int, IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, IsKilling.rootSystem_coroot_apply, IsKilling.traceForm_cartan_nondegenerate, LieModule.derivedSeries_le_lowerCentralSeries, LieHom.mem_idealRange, isRegular_iff_natTrailingDegree_charpoly_eq_rank, LeftInvariantDerivation.left_invariant, LieSubmodule.bot_lie, LieDerivation.coe_sub_linearMap, LieIdeal.gc_map_comap, LieSubmodule.lie_abelian_iff_lie_self_eq_bot, LieModule.instIsFaithfulMatrixForall, LieIdeal.map_comap_incl, LieDerivation.IsKilling.exists_eq_ad, LieSubalgebra.submodule_span_le_lieSpan, lieCharacterEquivLinearDual_apply, of_smul, coe_zeroRootSubalgebra, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, hasTrivialRadical_iff, IsKilling.corootSpace_eq_bot_iff, LieIdeal.incl_injective, LieDerivation.apply_lie_eq_add, LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap, IsSl2Triple.lie_lie_smul_f, IsSemisimple.booleanGenerators, derivedSeriesOfIdeal_succ_le, IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieSubmodule.lieIdeal_oper_eq_linear_span', instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, LieModule.Cohomology.twoCochain_alt, LieDerivation.commutator_apply, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieHom.quotKerEquivRange_toFun, LieRinehartAlgebra.Hom.anchor_derivation, IsKilling.apply_coroot_eq_cast', LieModule.traceForm_eq_zero_of_isNilpotent, LieIdeal.lowerCentralSeries_map_eq, derivedSeries_of_derivedLength_succ, LieModule.Cohomology.d₂₃_apply, LieIdeal.coe_killingCompl_top, LieModule.Cohomology.d₁₂_apply_apply, SpecialLinear.singleSubSingle_add_singleSubSingle, Extension.toKer_bracket, LieSubalgebra.toSubmodule_le_toSubmodule, non_trivial_center_of_isNilpotent, bracket_ofTwoCocycle, LieIdeal.instIsNilpotentSubtypeMemLieSubmoduleOfIsNilpotent, rank_le_natTrailingDegree_charpoly_ad, LieIdeal.coe_toLieSubalgebra, Derivation.bracket_eq_fun, LieSubalgebra.mem_toSubmodule, abelian_of_solvable_ideal_eq_bot_iff, LieIdeal.mem_killingCompl, ad_eq_lmul_left_sub_lmul_right, LieModule.traceForm_isSymm, LieDerivation.coe_neg_linearMap, LieDerivation.coe_smul_linearMap, abelian_radical_iff_solvable_is_abelian, LieModule.instIsTriangularizableSubtypeMemLieSubmodule, hasCentralRadical_and_of_isIrreducible_of_isFaithful, LieSubmodule.sup_lie, LieSubalgebra.mem_carrier, FreeLieAlgebra.liftAux_map_smul, LieModule.LinearWeights.map_smul, LieSubalgebra.engel_carrier, LoopAlgebra.toFinsupp_symm_single, LieModule.Weight.coe_coe, LieModule.mem_ker, LieIdeal.le_killingCompl_top_of_isLieAbelian, LieModule.traceForm_lieSubalgebra_mk_right, IsKilling.chainLength_zero, self_module_ker_eq_center, lieAlgebraSelfModule, LieIdeal.incl_coe, Extension.lie_incl_mem_ker, radical_eq_top_of_isSolvable, coe_rootSpaceWeightSpaceProduct_tmul, IsKilling.invtSubmoduleToLieIdeal_top, LieIdeal.derivedSeries_map_le, LieHom.ker_eq_bot, IsKilling.coe_corootSpace_eq_span_singleton', IsSl2Triple.mem_toLieSubalgebra_iff, LeftInvariantDerivation.evalAt_coe, LieIdeal.incl_isIdealMorphism, LieSubalgebra.coe_normalizer_eq_normalizer, engel_isBot_of_isMin.lieCharpoly_map_eval, LieSubalgebra.coe_toSubmodule, rootSpaceProduct_def, lieEquivMatrix'_apply, LieRinehartAlgebra.toIsScalarTower, LieSubalgebra.sInf_toSubmodule, LieModule.lowerCentralSeries_succ, LieSubmodule.lie_le_inf, cartan_sup_iSup_rootSpace_eq_top, LieSubalgebra.coe_ad_pow, derivedSeriesOfIdeal_le_self, LieIdeal.lieModule, Derivation.instLieModule, IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieIdeal.subsingleton_of_bot, isSolvable_iff, lieCharacterEquivLinearDual_symm_apply, LieSubalgebra.mem_toLieSubmodule, LieIdeal.toLieSubalgebra_toSubmodule, Extension.lieModuleOf, instIsSolvableTensorProduct, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LinearMap.BilinForm.lieInvariant_iff, LieModule.Cohomology.twoCochain_skew, Matrix.instLieModuleForall, LieModule.traceForm_comm, IsKilling.killingForm_nondegenerate, derivedSeriesOfIdeal_succ, LieDerivation.IsKilling.killingForm_restrict_range_ad, IsSl2Triple.lie_h_e_smul, Extension.ringModuleOf_bracket, ad_nilpotent_of_nilpotent, IsSemisimple.sSup_atoms_eq_top, LieModule.rank_eq_natTrailingDegree, LieSubmodule.mem_baseChange_iff, DirectSum.lieAlgebraComponent_apply, IsKilling.chainLength_neg, IsSimple.isAtom_top, ad_pow_lie, LieModule.Cohomology.d₁₂_apply_coe_apply_apply, LieEquiv.right_inv, FreeLieAlgebra.liftAux_map_add, RootPairing.GeckConstruction.span_range_h'_eq_top, LieIdeal.isLieAbelian_iff, LieModule.Cohomology.mem_twoCochain_iff, instIsFaithfulOfHasTrivialRadical, LieModule.Weight.coe_toLinear_eq_zero_iff, IsKilling.coroot_mem_corootSpace, abelian_iff_derived_one_eq_bot, LieSubalgebra.toSubmodule_injective, LieIdeal.incl_range, Derivation.commutator_coe_linear_map, LieHom.toNonUnitalAlgHom_toFun, LieModule.exists_nontrivial_weightSpace_of_isNilpotent, LieIdeal.map_mono, IsKilling.apply_coroot_eq_cast, LieSubalgebra.coe_incl', LieModule.Cohomology.d₁₂_apply_apply_ofTrivial, FreeLieAlgebra.liftAux_map_mul, IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, JacobsonNoether.exist_pow_eq_zero_of_le, LieSubmodule.lie_comm, center_le_radical, coe_lowerCentralSeries_ideal_quot_eq, RootPairing.GeckConstruction.span_range_h_le_range_diagonal, LieModule.Weight.isZero_neg, LieModule.instIsNilpotentTensor, LieDerivation.coe_zero_linearMap, LieHom.ker_le_comap, zero_rootSpace_eq_top_of_nilpotent, LieModule.lie_traceForm_eq_zero, LieDerivation.leibniz_lie, IsKilling.corootForm_rootSystem_eq_killing, LieModule.trace_comp_toEnd_genWeightSpace_eq, LieIdeal.comap_bracket_le, RootPairing.GeckConstruction.instIsIrreducible, killingForm_apply_apply, LieDerivation.lie_apply, LieIdeal.map_lowerCentralSeries_le, smulCommClass, LieSubalgebra.mem_engel_iff, lie_smul, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra, hasTrivialRadical_iff_no_solvable_ideals, LieModule.Cohomology.mem_twoCocycle_iff, LieIdeal.map_sup_ker_eq_map', LieModule.traceForm_eq_zero_of_isTrivial, derivedSeriesOfIdeal_antitone, LieSubmodule.lie_baseChange, LieModule.toModuleHom_apply, IsExtension.ker_eq_bot, LieSubmodule.top_lie_le_iff_le_normalizer, LieIdeal.topEquiv_apply, IsSolvable.solvable_int, derivedSeries_baseChange, derivedSeriesOfIdeal_add_le_add, LieDerivation.toLinearMapLieHom_injective, FreeLieAlgebra.liftAux_spec, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieDerivation.ad_isIdealMorphism, derivedSeries_def, LieIdeal.coe_map_of_surjective, LieDerivation.lie_coe_lieDerivation_apply, smul_lie, LieModule.toEnd_lie, ExtendScalars.bracket_tmul, LieModule.Cohomology.add_apply_apply, IsKilling.biSup_corootSpace_eq_top, LieSubalgebra.coe_lieSpan_eq_span_of_forall_lie_eq_zero, LieHom.toFun_eq_coe, IsKilling.disjoint_ker_weight_corootSpace, LoopAlgebra.toFinsupp_single_tmul, ad_apply, LieIdeal.isCompl_killingCompl, LieHom.instLinearMapClass, LieModule.traceForm_eq_sum_finrank_nsmul, conj_ad_apply, LieSubmodule.tmul_mem_baseChange_of_mem, toModule_injective, Extension.ofTwoCocycle_proj_apply, LieDerivation.IsKilling.rangeAdOrthogonal_carrier, LieHom.quotKerEquivRange_invFun, LieSubalgebra.toSubmodule_eq_bot, LieSubalgebra.coe_ofLe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieIdeal.derivedSeries_eq_bot_iff, RootPairing.GeckConstruction.diagonal_elim_mem_span_h_iff, Extension.bracket, LieIdeal.comap_bracket_incl, IsKilling.span_weight_isNonZero_eq_top, IsKilling.chainTopCoeff_add_chainBotCoeff, LieSubmodule.mem_idealizer, LieIdeal.killingForm_eq, center_eq_bot, LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit, rootSpace_comap_eq_genWeightSpace, LieModule.isFaithful_iff_ker_eq_bot, isLieAbelian_iff_center_eq_top, LieModule.traceForm_lieSubalgebra_mk_left, LieDerivation.commutator_coe_linear_map, LieModule.Cohomology.smul_apply_apply, UniversalEnvelopingAlgebra.ΞΉ_apply, LieHom.coe_toLinearMap, LieModule.Cohomology.instLinearMapClassSubtypeLinearMapIdMemSubmoduleTwoCochain, LieModule.toEnd_pow_lie, restrict_killingForm, Extension.ofTwoCocycle_incl_apply, LieIdeal.coe_derivedSeries_eq_int, LieIdeal.map_comap_bracket_eq, LieModule.toEnd_baseChange, LieHom.idealRange_eq_map, LieModule.le_max_triv_iff_bracket_eq_bot, LieSubalgebra.coe_toLieSubmodule, LieModule.smul_lie, IsKilling.coroot_neg, LieModule.exists_nontrivial_weightSpace_of_isSolvable, maxNilpotentIdeal_eq_top_of_isNilpotent, LieHom.idealRange_eq_lieSpan_range, LieIdeal.comap_mono, LieHom.toNonUnitalAlgHom_apply, SpecialLinear.val_single, LoopAlgebra.residuePairing_apply_apply, lieEquivMatrix'_symm_apply, LieSubalgebra.instIsNoetherianSubtypeMem, IsKilling.ideal_eq_bot_of_isLieAbelian, SpecialLinear.singleSubSingle_sub_singleSubSingle, IsKilling.biSup_corootSubmodule_eq_cartan, LieIdeal.incl_idealRange, LieSubmodule.inf_lie, HasTrivialRadical.radical_eq_bot, rank_le_finrank_engel, LieIdeal.comap_incl_self, LieDerivation.IsKilling.range_ad_eq_top, LieHom.range_toSubmodule, isScalarTower, IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieDerivation.lie_ad, IsSimple.instIsIrreducible, LieHom.mem_ker, LieSubalgebra.normalizer_eq_self_iff, IsKilling.rootSystem_pairing_apply, LieSubmodule.Quotient.mk_bracket, IsKilling.killingCompl_top_eq_bot, IsKilling.orthogonal_span_coroot_eq_ker, IsKilling.cartanEquivDual_apply_apply, LieDerivation.leibniz', rank_le_finrank, LieIdeal.map_comap_eq, LieSubalgebra.toSubmodule_eq_top, LieIdeal.comap_map_le, IsKilling.coroot_eq_zero_iff, hasTrivialRadical_iff_no_abelian_ideals, isFaithful_self_iff, LieHom.range_subset_idealRange, radicalIsSolvable, LieModule.traceForm_genWeightSpace_eq, LieModule.traceForm_apply_apply, IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra, LieIdeal.mem_comap, LieIdeal.map_bracket_eq, LieModule.Cohomology.twoCochain_val_apply, ext_iff, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieIdeal.map_le_iff_le_comap, LieSubalgebra.inf_toSubmodule, LieIdeal.isLieAbelian_of_trivial, LieIdeal.top_toLieSubalgebra, Submodule.exists_lieSubalgebra_coe_eq_iff, rank_eq_natTrailingDegree, LieModule.traceForm_apply_lie_apply, IsKilling.chainBotCoeff_le_chainLength, LieSubmodule.lieIdeal_oper_eq_linear_span, LieEquiv.toLinearEquiv_injective, LieDerivation.IsKilling.ad_apply_eq_zero_iff, mem_corootSpace', derivedSeries_lt_top_of_solvable, LieIdeal.derivedSeries_succ_eq_top_iff, ad_lie, derivedSeries_of_bot_eq_bot, LieHom.toLinearMap_comp, Extension.ringModuleOf_bracket_proj, abelian_derivedAbelianOfIdeal, LeftInvariantDerivation.evalAt_mul, LieHom.map_le_idealRange, LieSubmodule.lieIdeal_oper_eq_span, abelian_iff_derived_succ_eq_bot, LieHom.map_lie', isNilpotent_range_ad_iff, IsKilling.traceForm_coroot, LieIdeal.map_le, LieDerivation.coe_add_linearMap, LieModule.traceForm_eq_sum_finrank_nsmul_mul, toLieSubmodule_le_rootSpace_zero, IsKilling.coroot_zero, nilpotent_ad_of_nilpotent_algebra, Derivation.commutator_apply, instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, LieSubalgebra.coe_lieSpan_submodule_eq_iff, LieModule.Weight.isNonZero_neg, derivedSeriesOfIdeal_baseChange, center_le_maxNilpotentIdeal, IsKilling.chainBotCoeff_add_chainTopCoeff, LieSubmodule.lcs_succ, mem_zeroRootSubalgebra, Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieHom.mem_idealRange_iff, isRegular_iff_finrank_engel_eq_rank, IsKilling.ker_restrict_eq_bot_of_isCartanSubalgebra, LieSubalgebra.instIsScalarTowerSubtypeMem, ExtendScalars.instLieModule, mem_corootSpace, LieModule.Cohomology.mem_twoCocycle_iff_of_trivial, isSolvableAdd, isSolvable_tensorProduct_iff, LieIdeal.toSubmodule_killingCompl, maxNilpotentIdeal_le_radical, HasTrivialRadical.eq_bot_of_isSolvable, LieRinehartAlgebra.instDerivation, LieHom.ker_toSubmodule, maxNilpotentIdealIsNilpotent, IsKilling.chainTopCoeff_le_chainLength, LieIdeal.coe_lcs_eq, LieDerivation.coe_ad_apply_eq_ad_apply, SpecialLinear.val_singleSubSingle, isNilpotent_iff_forall, ad_ker_eq_bot_of_hasTrivialRadical, IsKilling.span_weight_eq_top, LieSubalgebra.bot_toSubmodule, LieModule.traceForm_flip, LieDerivation.ad_ker_eq_center, LieEquiv.left_inv, LieModule.traceForm_apply_lie_apply', LieDerivation.mem_ad_idealRange_iff, LieDerivation.instLinearMapClass, derivedLength_eq_derivedLengthOfIdeal, LieHom.le_ker_iff, IsSemisimple.sSupIndep_isAtom, isNilpotent_ad_of_isNilpotent, instIsLieTowerSubtypeMemLieSubmodule, LieModule.Weight.toLinear_neg, LieDerivation.IsKilling.killingForm_restrict_range_ad_nondegenerate, LieSubmodule.coe_baseChange, isSolvableBot, IsKilling.ker_killingForm_eq_bot, LieDerivation.coeFn_coe, LieIdeal.comap_bracket_eq, LieSubalgebra.instSMulMemClass, LieIdeal.solvable_iff_le_radical, LieDerivation.toFun_eq_coe, LieModule.Cohomology.d₂₃_comp_d₁₂, LieIdeal.incl_apply, LieSubmodule.baseChange_top, IsSolvable.solvable, Function.instIsSolvableSubtypeMemLieSubmodule, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, of_symm_smul, LieDerivation.iterate_apply_lie', ad_ker_eq_self_module_ker, LieIdeal.map_sup_ker_eq_map, LieEquiv.ofBijective_invFun, IsSimple.isAtom_iff_eq_top, DirectSum.toLieAlgebra_apply, LieModule.range_traceForm_le_span_weight, Extension.lie_toKer_apply, IsKilling.corootSpace_zero_eq_bot, ExtendScalars.map_apply_tmul, rootSpaceProduct_tmul, LieModule.traceForm_lieInvariant, LieIdeal.ker_incl, LieSubmodule.lie_le_left, LieIdeal.lcs_top, LieRinehartAlgebra.toLieModule, SpecialLinear.singleSubSingle_sub_singleSubSingle', IsKilling.rootSystem_root_apply, LieIdeal.comap_incl_eq_bot, LieIdeal.map_eq_bot_iff, LieSubalgebra.instIsArtinianSubtypeMem, LieSubalgebra.normalizer_eq_self_of_isCartanSubalgebra, LieSubalgebra.smul_mem, LieSubmodule.lie_coe_mem_lie, LieModule.coe_lowerCentralSeries_ideal_le, LieModule.Weight.coe_neg, LieIdeal.comap_toSubmodule, LieIdeal.map_comap_le, UniversalEnvelopingAlgebra.lift_ΞΉ_apply', LieModule.Weight.instLinearMapClass, isExtension_of_surjective, IsKilling.coe_corootSpace_eq_span_singleton, LieIdeal.idealizer_eq_normalizer, LieRinehartAlgebra.instLieRinehartRingDerivation, LieEquiv.instLinearEquivClass, IsSimple.eq_bot_or_eq_top, LieModule.ker_eq_bot, LieSubalgebra.coe_ad, LieIdeal.map_sup, LieModule.toEnd_matrix, LieModule.Weight.toLinear_apply, LieHom.idealRange_eq_top_of_surjective, LieSubmodule.gc_top_lie_normalizer, IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieHom.toNonUnitalAlgHom_injective, LieEquiv.coe_toLinearEquiv, LieDerivation.ad_apply_apply, LieSubmodule.baseChange_bot, LeftInvariantDerivation.evalAt_apply, LieSubalgebra.ad_comp_incl_eq, killingForm_of_equiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
Module.toDistribMulAction
toModule
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
Module.toDistribMulAction
toModule
β€”ext
lie_smul πŸ“–mathematicalβ€”Bracket.bracket
LieRing.toBracket
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
Module.toDistribMulAction
toModule
β€”β€”
toModule_injective πŸ“–mathematicalβ€”LieAlgebra
Rat.commRing
Module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
toModule
β€”β€”

LieEquiv

Definitions

NameCategoryTheorems
hasCoeToLieHom πŸ“–CompOpβ€”
hasCoeToLinearEquiv πŸ“–CompOpβ€”
instEquivLike πŸ“–CompOp
49 mathmath: skewAdjointMatricesLieSubalgebraEquivTranspose_apply, map_lie, Matrix.lieConj_apply, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, skewAdjointLieSubalgebraEquiv_apply, LieSubalgebra.equivOfLe_apply, one_apply, skewAdjointLieSubalgebraEquiv_symm_apply, coe_injective, LieHom.quotKerEquivRange_toFun, LieHom.equivRangeOfInjective_apply, LieAlgebra.Extension.toKer_bracket, LieAlgebra.Orthogonal.indefiniteDiagonal_assoc, lieEquivMatrix'_apply, LieDerivation.exp_map_apply, ext_iff, LieAlgebra.Extension.ringModuleOf_bracket, ofEq_apply, trans_apply, ofSubalgebras_apply, Matrix.reindexLieEquiv_apply, LieAlgebra.LieEquiv.ofCoboundary_toFun, lieSubalgebraMap_apply, AlgEquiv.toLieEquiv_symm_apply, Matrix.lieConj_symm_apply, apply_symm_apply, LieIdeal.topEquiv_apply, LinearEquiv.lieConj_apply, LieAlgebra.conj_ad_apply, symm_apply_apply, LieAlgebra.Extension.bracket, RootPairing.GeckConstruction.Ο‰Conj_toFun, lieEquivMatrix'_symm_apply, LieSubalgebra.topEquiv_apply, ofSubalgebras_symm_apply, RootPairing.GeckConstruction.Ο‰Conj_mem_of_mem, ofInjective_apply, LieAlgebra.Extension.ringModuleOf_bracket_proj, ofBijective_toFun, coe_coe, skewAdjointMatricesLieSubalgebraEquiv_apply, AlgEquiv.toLieEquiv_apply, refl_apply, LieAlgebra.Extension.lie_toKer_apply, coe_toLieHom, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, instLinearEquivClass, coe_toLinearEquiv, LieAlgebra.killingForm_of_equiv_apply
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: one_apply
invFun πŸ“–CompOp
6 mathmath: right_inv, LieHom.quotKerEquivRange_invFun, RootPairing.GeckConstruction.Ο‰Conj_invFun, LieAlgebra.LieEquiv.ofCoboundary_invFun, left_inv, ofBijective_invFun
ofBijective πŸ“–CompOp
2 mathmath: ofBijective_toFun, ofBijective_invFun
refl πŸ“–CompOp
4 mathmath: refl_symm, symm_trans_self, self_trans_symm, refl_apply
toLieHom πŸ“–CompOp
10 mathmath: bijective, injective, LieSubalgebra.mem_map_submodule, right_inv, lieSubalgebraMap_apply, surjective, coe_coe, left_inv, coe_toLieHom, LieModule.toEnd_matrix
toLinearEquiv πŸ“–CompOp
7 mathmath: LieSubalgebra.mem_map_submodule, LieDerivation.exp_apply, LieAlgebra.conj_ad_apply, toLinearEquiv_injective, toLinearEquiv_mk, LieAlgebra.Extension.twoCocycleOf_coe_coe, coe_toLinearEquiv
trans πŸ“–CompOp
4 mathmath: symm_trans, trans_apply, symm_trans_self, self_trans_symm

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”LinearEquiv.apply_symm_apply
RingHomInvPair.ids
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
β€”LinearEquiv.bijective
RingHomInvPair.ids
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
LieEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”
coe_injective πŸ“–mathematicalβ€”LieEquiv
DFunLike.coe
EquivLike.toFunLike
instEquivLike
β€”RingHomInvPair.ids
LinearEquiv.coe_injective
toLinearEquiv_injective
coe_toLieHom πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
LieEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”
coe_toLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
toLinearEquiv
LieEquiv
instEquivLike
β€”RingHomInvPair.ids
ext πŸ“–β€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
β€”LinearEquiv.injective
RingHomInvPair.ids
instLinearEquivClass πŸ“–mathematicalβ€”LinearEquivClass
LieEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
instEquivLike
β€”RingHomInvPair.ids
coe_toLinearEquiv
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
RingHom.id_apply
left_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieAlgebra.toModule
LieHom.toLinearMap
toLieHom
β€”β€”
map_lie πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
β€”LieHom.map_lie
ofBijective_invFun πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LieHom
LieHom.instFunLike
invFun
ofBijective
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
LinearEquiv.ofBijective
LieHom.toLinearMap
β€”β€”
ofBijective_toFun πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LieHom
LieHom.instFunLike
LieEquiv
EquivLike.toFunLike
instEquivLike
ofBijective
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
instOne
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
right_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieAlgebra.toModule
LieHom.toLinearMap
toLieHom
β€”β€”
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieHom.instFunLike
toLieHom
β€”LinearEquiv.surjective
RingHomInvPair.ids
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”LinearEquiv.symm_apply_apply
RingHomInvPair.ids
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
LieEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans πŸ“–mathematicalβ€”symm
trans
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”self_trans_symm
toLinearEquiv_injective πŸ“–mathematicalβ€”LieEquiv
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
toLinearEquiv
β€”RingHomInvPair.ids
toLinearEquiv_mk πŸ“–mathematicalAddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieAlgebra.toModule
LieHom.toLinearMap
toLinearEquiv
RingHomInvPair.ids
β€”RingHomInvPair.ids
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”

LieHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
8 mathmath: comp_apply, id_comp, coe_comp, UniversalEnvelopingAlgebra.lift_symm_apply, comp_id, AlgHom.toLieHom_comp, toLinearMap_comp, UniversalEnvelopingAlgebra.hom_ext_iff
id πŸ“–CompOp
6 mathmath: coe_id, AlgHom.toLieHom_id, id_comp, id_apply, comp_id, LieModule.toEnd_module_end
instCoeLinearMapId πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
184 mathmath: LieEquiv.bijective, coe_zero, LieAlgebra.Extension.incl_apply_mem_ker, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieDerivation.lie_der_ad_eq_ad_der, LieDerivation.ad_apply_lieDerivation, LieSubalgebra.inclusion_apply, ext_iff, zero_apply, congr_fun, LieModule.toEnd_pow_apply_map, LieEquiv.injective, LieModule.trace_toEnd_eq_zero_of_mem_lcs, surjective_rangeRestrict, LieAlgebra.mapsTo_toEnd_genWeightSpace_add_of_mem_rootSpace, LieAlgebra.finrank_engel, LieSubalgebra.equivOfLe_apply, mem_idealRange, LieAlgebra.isRegular_iff_natTrailingDegree_charpoly_eq_rank, LieModule.exists_genWeightSpace_zero_le_ker_of_isNoetherian, LieSubalgebra.toEnd_eq, LieDerivation.IsKilling.exists_eq_ad, LieModule.isNilpotent_toEnd_genWeightSpace_zero, LieIdeal.incl_injective, coe_id, LieModule.trace_toEnd_genWeightSpace, UniversalEnvelopingAlgebra.lift_unique, LieModule.shiftedGenWeightSpace.toEnd_eq, FreeLieAlgebra.of_comp_lift, one_apply, LieSubmodule.Quotient.toEnd_comp_mk', LieModule.mem_posFittingCompOf, mem_range_self, LieAlgebra.Extension.toKer_bracket, LieAlgebra.rank_le_natTrailingDegree_charpoly_ad, LieSubmodule.lie_top_eq_of_span_sup_eq_top, LieAlgebra.ad_eq_lmul_left_sub_lmul_right, LieModule.isNilpotent_toEnd_of_isNilpotent, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, LieSubmodule.coe_map_toEnd_le, LieModule.mem_genWeightSpace, UniversalEnvelopingAlgebra.ΞΉ_comp_lift, FreeLieAlgebra.lift_comp_of, LieAlgebra.Extension.incl_injective, LieAlgebra.Extension.lie_incl_mem_ker, LieSubalgebra.toEnd_mk, ker_eq_bot, LieModule.exists_genWeightSpace_le_ker_of_isNoetherian, LieModule.coe_genWeightSpaceOf_zero, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, map_lie, LieSubmodule.traceForm_eq_zero_of_isTrivial, LieModule.weight_vector_multiplication, LieSubalgebra.coe_ad_pow, LieRinehartAlgebra.Hom.map_smul_apply', RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieModule.IsTriangularizable.maxGenEigenspace_eq_top, LieModule.isFaithful_iff, LieAlgebra.Extension.ringModuleOf_bracket, LieSubalgebra.coe_inclusion, LieSubmodule.toEnd_comp_subtype_mem, LieAlgebra.ad_nilpotent_of_nilpotent, DirectSum.lieAlgebraComponent_apply, LieAlgebra.ad_pow_lie, comp_apply, LieModule.isNilpotent_toEnd_of_isNilpotentβ‚‚, LieSubmodule.mapsTo_pow_toEnd_sub_algebraMap, toNonUnitalAlgHom_toFun, LieModule.exists_forall_pow_toEnd_eq_zero, DirectSum.lieAlgebraOf_apply, LieDerivation.IsKilling.ad_mem_orthogonal_of_mem_orthogonal, JacobsonNoether.exist_pow_eq_zero_of_le, rangeRestrict_apply, LieRingModule.compLieHom_apply, LieSubmodule.toEnd_restrict_eq_toEnd, LieIdeal.coe_inclusion, UniversalEnvelopingAlgebra.lift_ΞΉ_apply, coe_range, FreeLieAlgebra.lift_unique, LieModule.IsFaithful.injective_toEnd, LieSubalgebra.mem_comap, LieIdeal.inclusion_injective, range_eq_top, killingForm_apply_apply, LieSubalgebra.mem_engel_iff, LieModule.iterate_toEnd_mem_lowerCentralSeriesβ‚‚, coe_comp, IsSl2Triple.HasPrimitiveVectorWith.pow_toEnd_f_eq_zero_of_eq_nat, LieModule.toEnd_eq_iff, id_apply, LieModule.isNilpotent_toEnd_of_mem_rootSpace, range_coe, LieDerivation.toLinearMapLieHom_injective, LieEquiv.surjective, LieModule.toEnd_lie, toFun_eq_coe, isIdealMorphism_iff, LieAlgebra.ad_apply, LieAlgebra.toEnd_pow_apply_mem, instLinearMapClass, LieModule.coe_genWeightSpace_of_top, LieAlgebra.lieCharacter_apply_of_mem_derived, LieAlgebra.conj_ad_apply, LieAlgebra.Extension.ofTwoCocycle_proj_apply, LieSubalgebra.inclusion_injective, coe_mk, LieModule.isRegular_iff_natTrailingDegree_charpoly_eq_rank, IsSl2Triple.HasPrimitiveVectorWith.lie_f_pow_toEnd_f, UniversalEnvelopingAlgebra.ΞΉ_apply, coe_toLinearMap, LieModule.toEnd_pow_lie, LieSubmodule.coe_toEnd, LieModule.toEnd_apply_apply, LieAlgebra.Extension.ofTwoCocycle_incl_apply, coe_injective, LieModule.commute_toEnd_of_mem_center_right, coe_one, LieModule.toEnd_baseChange, FreeLieAlgebra.hom_ext_iff, toNonUnitalAlgHom_apply, LieModule.isNilpotent_iff_forall, LieModule.isNilpotent_toEnd_sub_algebraMap, AlgHom.coe_toLieHom, IsSl2Triple.HasPrimitiveVectorWith.lie_e_pow_succ_toEnd_f, IsSl2Triple.HasPrimitiveVectorWith.lie_h_pow_toEnd_f, LieDerivation.lie_ad, LieAlgebra.Extension.proj_incl, mem_ker, LieSubalgebra.coe_incl, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_symm_apply, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieModule.toEnd_eq_zero_iff, LieAlgebra.isNilpotent_ad_of_mem_rootSpace, LieModule.traceForm_apply_apply, LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra, LieIdeal.mem_comap, LieModule.trace_toEnd_genWeightSpaceChain_eq_zero, LieRinehartAlgebra.Hom.map_smul_apply, LieModule.maxGenEigenSpace_toEnd_eq_top, FreeLieAlgebra.lift_symm_apply, LieDerivation.IsKilling.ad_apply_eq_zero_iff, LieSubalgebra.mem_map, LieAlgebra.ad_lie, LieModule.isNilpotent_iff_forall', LieAlgebra.Extension.ringModuleOf_bracket_proj, LieSubmodule.coe_toEnd_pow, LieModule.mem_genWeightSpaceOf, LieDerivation.injective_ad_of_center_eq_bot, LieIdeal.map_le, LieAlgebra.nilpotent_ad_of_nilpotent_algebra, LieAlgebra.Extension.proj_surjective, mem_range, FreeLieAlgebra.lift_of_apply, LieAlgebra.mem_zeroRootSubalgebra, mem_idealRange_iff, LieRinehartAlgebra.Hom.apply_lie', LieModule.iterate_toEnd_mem_lowerCentralSeries, LieAlgebra.lieCharacter_apply_lie, LieDerivation.coe_ad_apply_eq_ad_apply, LieAlgebra.lieCharacter_apply_lie', LieEquiv.coe_coe, LieAlgebra.isNilpotent_iff_forall, LieDerivation.mem_ad_idealRange_iff, le_ker_iff, LieAlgebra.isNilpotent_ad_of_isNilpotent, LieRinehartAlgebra.Hom.toLinearMap'_apply, AlgHom.toLieHom_apply, LieIdeal.incl_apply, LieModule.commute_toEnd_of_mem_center_left, DirectSum.toLieAlgebra_apply, LieAlgebra.Extension.lie_toKer_apply, LieEquiv.coe_toLieHom, LieAlgebra.ExtendScalars.map_apply_tmul, range_eq_ker_iff, LieIdeal.inclusion_apply, UniversalEnvelopingAlgebra.lift_ΞΉ_apply', LieIdeal.mem_map, LieRinehartAlgebra.Hom.apply_lie, LieModule.Weight.hasEigenvalueAt, LieModule.rank_le_natTrailingDegree_charpoly_ad, LieSubalgebra.coe_ad, LieModule.toEnd_pow_comp_lieHom, LieDerivation.ad_apply_apply, LieSubalgebra.ad_comp_incl_eq
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
2 mathmath: one_apply, coe_one
instZero πŸ“–CompOp
2 mathmath: coe_zero, zero_apply
inverse πŸ“–CompOpβ€”
toLinearMap πŸ“–CompOp
21 mathmath: LieAlgebra.lieCharacterEquivLinearDual_apply, quotKerEquivRange_toFun, LieIdeal.incl_coe, LieIdeal.map_toSubmodule, LieModule.rank_eq_natTrailingDegree, LieEquiv.right_inv, LieModule.trace_comp_toEnd_genWeightSpace_eq, LieIdeal.coe_map_of_surjective, toFun_eq_coe, quotKerEquivRange_invFun, coe_toLinearMap, range_toSubmodule, LieAlgebra.rank_eq_natTrailingDegree, toLinearMap_comp, map_lie', ker_toSubmodule, LieEquiv.left_inv, LieEquiv.ofBijective_invFun, DirectSum.toLieAlgebra_apply, LieIdeal.comap_toSubmodule, LieSubalgebra.ad_comp_incl_eq

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
comp
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
id
β€”β€”
coe_injective πŸ“–mathematicalβ€”LieHom
DFunLike.coe
instFunLike
β€”β€”
coe_mk πŸ“–mathematicalAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddHom.toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
LinearMap.toAddHom
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
LieHom
instFunLike
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
instOne
β€”β€”
coe_toLinearMap πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
LinearMap.instFunLike
toLinearMap
LieHom
instFunLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
instZero
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
comp
β€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
β€”β€”
ext πŸ“–β€”DFunLike.coe
LieHom
instFunLike
β€”β€”coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instLinearMapClass πŸ“–mathematicalβ€”LinearMapClass
LieHom
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
instFunLike
β€”coe_toLinearMap
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
MulActionSemiHomClass.map_smulβ‚›β‚—
SemilinearMapClass.toMulActionSemiHomClass
lie_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Bracket.bracket
LieRingModule.toBracket
LinearMap.addCommGroup
LinearMap.instLieRingModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
map_add πŸ“–mathematicalβ€”DFunLike.coeβ€”map_add
map_lie πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
β€”map_lie'
map_lie' πŸ“–mathematicalβ€”AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieAlgebra.toModule
toLinearMap
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”β€”
map_neg πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”map_neg
map_smul πŸ“–mathematicalβ€”DFunLike.coeβ€”map_smul
map_sub πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”map_sub
map_zero πŸ“–mathematicalβ€”DFunLike.coeβ€”map_zero
mk_coe πŸ“–β€”DFunLike.coe
LieHom
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddHom.toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
LinearMap.toAddHom
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”β€”ext
one_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
instOne
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieAlgebra.toModule
toLinearMap
DFunLike.coe
LieHom
instFunLike
β€”β€”
toLinearMap_comp πŸ“–mathematicalβ€”toLinearMap
comp
LinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
instFunLike
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”β€”

LieModule

Theorems

NameKindAssumesProvesValidatesDepends On
compLieHom πŸ“–mathematicalβ€”LieModule
LieRingModule.compLieHom
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
LieHom.instLinearMapClass
smul_lie
lie_smul
lie_smul πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”
smul_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
β€”β€”

LieModuleEquiv

Definitions

NameCategoryTheorems
hasCoeToEquiv πŸ“–CompOpβ€”
hasCoeToLieModuleHom πŸ“–CompOpβ€”
hasCoeToLinearEquiv πŸ“–CompOpβ€”
instEquivLike πŸ“–CompOp
18 mathmath: injective, refl_apply, apply_eq_iff_eq_symm_apply, symm_apply_apply, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, trans_apply, instLinearEquivClass, coe_toLinearEquiv, TensorProduct.LieModule.lift_apply, ofTop_apply, coe_mk, ext_iff, apply_symm_apply, LieModule.coe_maxTrivEquiv_apply, coe_toLieModuleHom, coe_coe, surjective, one_apply
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: one_apply
invFun πŸ“–CompOp
2 mathmath: left_inv, right_inv
refl πŸ“–CompOp
4 mathmath: refl_apply, LieModule.maxTrivEquiv_of_refl_eq_refl, symm_trans_self, self_trans_symm
toEquiv πŸ“–CompOp
2 mathmath: toEquiv_mk, toEquiv_injective
toLieModuleHom πŸ“–CompOp
9 mathmath: LieSubmodule.orderIsoMapComap_apply, left_inv, LieSubmodule.orderIsoMapComap_symm_apply, LieModule.map_genWeightSpace_eq, LieModule.map_posFittingComp_eq, coe_toLieModuleHom, coe_coe, right_inv, range_coe
toLinearEquiv πŸ“–CompOp
1 mathmath: coe_toLinearEquiv
trans πŸ“–CompOp
4 mathmath: symm_trans, trans_apply, symm_trans_self, self_trans_symm

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_eq_iff_eq_symm_apply
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”LinearEquiv.apply_symm_apply
RingHomInvPair.ids
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
toLieModuleHom
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”
coe_mk πŸ“–mathematicalAddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieModuleHom.toLinearMap
DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
LieModuleHom
LieModuleHom.instFunLike
β€”β€”
coe_toLieModuleHom πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
toLieModuleHom
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”
coe_toLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
toLinearEquiv
LieModuleEquiv
instEquivLike
β€”RingHomInvPair.ids
ext πŸ“–β€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”toEquiv_injective
Equiv.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
instLinearEquivClass πŸ“–mathematicalβ€”LinearEquivClass
LieModuleEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instEquivLike
β€”RingHomInvPair.ids
coe_toLinearEquiv
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
RingHom.id_apply
left_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieModuleHom.toLinearMap
toLieModuleHom
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
instOne
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
right_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieModuleHom.toLinearMap
toLieModuleHom
β€”β€”
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”LinearEquiv.symm_apply_apply
RingHomInvPair.ids
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
LieModuleEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans πŸ“–mathematicalβ€”symm
trans
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
apply_symm_apply
toEquiv_injective πŸ“–mathematicalβ€”LieModuleEquiv
Equiv
toEquiv
β€”β€”
toEquiv_mk πŸ“–mathematicalAddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
LieModuleHom.toLinearMap
toEquiv
DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”

LieModuleHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
7 mathmath: comp_apply, toLinearMap_comp, comp_ker_incl, LieSubmodule.Quotient.lieModuleHom_ext_iff, coe_comp, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieSubmodule.map_comp
hasNSMul πŸ“–CompOp
2 mathmath: nsmul_apply, coe_nsmul
hasZSMul πŸ“–CompOp
2 mathmath: zsmul_apply, coe_zsmul
id πŸ“–CompOp
4 mathmath: ker_id, coe_id, LieSubmodule.map_id, id_apply
instAdd πŸ“–CompOp
2 mathmath: coe_add, add_apply
instAddCommGroup πŸ“–CompOp
6 mathmath: TensorProduct.LieModule.liftLie_apply, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.coe_maxTrivLinearMapEquivLieModuleHom
instCoeOutLinearMapId πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
60 mathmath: mem_range, TensorProduct.LieModule.liftLie_apply, LieSubmodule.coe_map, LieModule.toEnd_pow_apply_map, LieSubmodule.Quotient.mk_eq_zero, zsmul_apply, LieSubmodule.mem_comap, ker_eq_bot, LieModuleEquiv.toEquiv_mk, coe_mk, instLinearMapClass, coe_id, LieSubmodule.incl_apply, mem_ker, coe_toLinearMap, comp_apply, coe_smul, coe_zsmul, coe_injective, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, smul_apply, nsmul_apply, coe_neg, TensorProduct.LieModule.map_tmul, coe_restrictLie, LieSubalgebra.coe_incl', TensorProduct.LieModule.coe_liftLie_eq_lift_coe, coe_range, LieSubmodule.coe_inclusion, LieModule.toModuleHom_apply, zero_apply, neg_apply, range_eq_top, coe_add, LieSubmodule.Quotient.surjective_mk', coe_comp, LieModuleEquiv.coe_mk, LieSubmodule.incl_eq_val, coe_nsmul, LieSubmodule.inclusion_apply, id_apply, coe_zero, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, add_apply, LieSubmodule.mem_map_of_mem, LieSubmodule.inclusion_injective, map_lie, LieModuleEquiv.coe_toLieModuleHom, coe_sub, LieModule.coe_maxTrivHom_apply, sub_apply, ext_iff, LieModuleEquiv.coe_coe, congr_fun, LieSubmodule.Quotient.mk'_apply, LieSubmodule.injective_incl, LieAlgebra.rootSpaceProduct_tmul, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.mem_map, map_lieβ‚‚
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
6 mathmath: TensorProduct.LieModule.liftLie_apply, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.coe_maxTrivLinearMapEquivLieModuleHom
instNeg πŸ“–CompOp
2 mathmath: coe_neg, neg_apply
instOne πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
2 mathmath: coe_smul, smul_apply
instSub πŸ“–CompOp
2 mathmath: coe_sub, sub_apply
instZero πŸ“–CompOp
3 mathmath: comp_ker_incl, zero_apply, coe_zero
inverse πŸ“–CompOpβ€”
toLinearMap πŸ“–CompOp
18 mathmath: LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.Quotient.toEnd_comp_mk', coe_toLinearMap, LieModuleEquiv.left_inv, toSubmodule_range, LieSubmodule.toSubmodule_map, LieModule.weight_vector_multiplication, toLinearMap_comp, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, coe_linear_mk, ker_toSubmodule, TensorProduct.LieModule.toLinearMap_map, LieSubmodule.toSubmodule_comap, map_lie', LieSubmodule.incl_coe, LieModuleEquiv.right_inv, LieModule.toEnd_pow_comp_lieHom

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instAdd
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
comp
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
id
β€”β€”
coe_injective πŸ“–mathematicalβ€”LieModuleHom
DFunLike.coe
instFunLike
β€”β€”
coe_linear_mk πŸ“–mathematicalAddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Bracket.bracket
LieRingModule.toBracket
toLinearMapβ€”β€”
coe_mk πŸ“–mathematicalAddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Bracket.bracket
LieRingModule.toBracket
DFunLike.coe
LieModuleHom
instFunLike
LinearMap
LinearMap.instFunLike
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coe_nsmul πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
hasNSMul
AddMonoid.toNatSMul
Pi.addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instSMul
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coe_toLinearMap πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
toLinearMap
LieModuleHom
instFunLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instZero
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coe_zsmul πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
hasZSMul
SubNegMonoid.toZSMul
Pi.subNegMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
comp
β€”β€”
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
β€”β€”
ext πŸ“–β€”DFunLike.coe
LieModuleHom
instFunLike
β€”β€”coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
id
β€”β€”
instLinearMapClass πŸ“–mathematicalβ€”LinearMapClass
LieModuleHom
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”coe_toLinearMap
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
MulActionSemiHomClass.map_smulβ‚›β‚—
SemilinearMapClass.toMulActionSemiHomClass
map_add πŸ“–mathematicalβ€”DFunLike.coeβ€”map_add
map_lie πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
Bracket.bracket
LieRingModule.toBracket
β€”map_lie'
map_lie' πŸ“–mathematicalβ€”AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
toLinearMap
Bracket.bracket
LieRingModule.toBracket
β€”β€”
map_lieβ‚‚ πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LieModuleHom
LinearMap.addCommGroup
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
LinearMap.instLieRingModule
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”smulCommClass_self
map_lie
sub_add_cancel
map_neg πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toNeg
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”map_neg
map_smul πŸ“–mathematicalβ€”DFunLike.coeβ€”map_smul
map_sub πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”map_sub
map_zero πŸ“–mathematicalβ€”DFunLike.coeβ€”map_zero
mk_coe πŸ“–β€”AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearMap.toAddHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
toLinearMap
Bracket.bracket
LieRingModule.toBracket
β€”β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
nsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
hasNSMul
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
toLinearMap_comp πŸ“–mathematicalβ€”toLinearMap
comp
LinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
zsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
instFunLike
hasZSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”

LieRing

Definitions

NameCategoryTheorems
instLieAlgebra πŸ“–CompOp
7 mathmath: LieAlgebra.isSolvable_iff_int, instLieModuleInt, LieModule.isNilpotent_iff_int, LieAlgebra.IsSolvable.solvable_int, LieIdeal.coe_derivedSeries_eq_int, LieModule.coe_lowerCentralSeries_eq_int, LieModule.IsNilpotent.nilpotent_int
toAddCommGroup πŸ“–CompOp
555 mathmath: LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map, LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieHom.coe_zero, LieAlgebra.Extension.incl_apply_mem_ker, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieDerivation.lie_der_ad_eq_ad_der, LieSubalgebra.top_toSubmodule, LieDerivation.instNoetherian, LieRinehartRing.lie_smul_eq_mul, DirectSum.bracket_apply, LieDerivation.ad_apply_lieDerivation, LieDerivation.iterate_apply_lie, LieIdeal.map_bracket_le, Function.Surjective.isLieAbelian, LieDerivation.IsKilling.instIsKilling_range_ad, LieAlgebra.abelian_radical_of_hasTrivialRadical, LieHom.zero_apply, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, LieIdeal.comap_incl_eq_top, LieAlgebra.derivedLength_zero, LieSubmodule.lowerCentralSeries_tensor_eq_baseChange, LieSubalgebra.isLieAbelian_lieSpan_iff, LieIdeal.restrict_killingForm, LieAlgebra.Orthogonal.mem_so, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, zsmul_lie, LieEquiv.map_lie, LieIdeal.coe_bracket_of_module, LieModule.traceForm_eq_sum_genWeightSpaceOf, Matrix.isSkewAdjoint_bracket, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieAlgebra.finrank_engel, LieModule.traceForm_eq_sum_finrank_nsmul', LieSubalgebra.mem_map_submodule, LieAlgebra.isSolvable_iff_int, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, LieModule.derivedSeries_le_lowerCentralSeries, LieHom.mem_idealRange, LieAlgebra.isRegular_iff_natTrailingDegree_charpoly_eq_rank, LieSubmodule.bot_lie, LieDerivation.coe_sub_linearMap, LieIdeal.gc_map_comap, LieSubmodule.lie_abelian_iff_lie_self_eq_bot, LieModule.instIsFaithfulMatrixForall, LieIdeal.map_comap_incl, LieDerivation.IsKilling.exists_eq_ad, LieSubalgebra.submodule_span_le_lieSpan, LieAlgebra.lieCharacterEquivLinearDual_apply, LieAlgebra.of_smul, LieAlgebra.coe_zeroRootSubalgebra, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, LieAlgebra.hasTrivialRadical_iff, leibniz_lie, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, LieIdeal.incl_injective, LieDerivation.apply_lie_eq_add, LieSubalgebra.bot_coe, LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap, IsSl2Triple.lie_lie_smul_f, LieAlgebra.IsSemisimple.booleanGenerators, lie_add, LieAlgebra.derivedSeriesOfIdeal_succ_le, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieSubalgebra.mem_bot, LieSubmodule.lieIdeal_oper_eq_linear_span', LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, LieModule.Cohomology.twoCochain_alt, LieDerivation.commutator_apply, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.traceForm_eq_zero_of_isNilpotent, LieIdeal.lowerCentralSeries_map_eq, LieAlgebra.derivedSeries_of_derivedLength_succ, LieModule.Cohomology.d₂₃_apply, LieIdeal.coe_killingCompl_top, LieModule.Cohomology.d₁₂_apply_apply, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LieAlgebra.Extension.toKer_bracket, LieSubalgebra.toSubmodule_le_toSubmodule, LieAlgebra.non_trivial_center_of_isNilpotent, DirectSum.lie_of_of_ne, LieAlgebra.bracket_ofTwoCocycle, LieIdeal.instIsNilpotentSubtypeMemLieSubmoduleOfIsNilpotent, LieAlgebra.rank_le_natTrailingDegree_charpoly_ad, LieIdeal.coe_toLieSubalgebra, Derivation.bracket_eq_fun, DirectSum.lie_of, LieSubalgebra.mem_toSubmodule, LieAlgebra.abelian_of_solvable_ideal_eq_bot_iff, LieIdeal.mem_killingCompl, LieAlgebra.ad_eq_lmul_left_sub_lmul_right, LieModule.traceForm_isSymm, LieDerivation.coe_neg_linearMap, LieDerivation.coe_smul_linearMap, LieAlgebra.abelian_radical_iff_solvable_is_abelian, two_nsmul_lie_lmul_lmul_add_add_eq_zero, LieModule.instIsTriangularizableSubtypeMemLieSubmodule, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, LieSubmodule.sup_lie, commutative_ring_iff_abelian_lie_ring, LieSubalgebra.mem_carrier, FreeLieAlgebra.liftAux_map_smul, LieModule.LinearWeights.map_smul, LieModule.genWeightSpaceChain_neg, LieSubalgebra.engel_carrier, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, LieRinehartRing.leibniz_mul_right, LieModule.Weight.coe_coe, LieRingModule.toEnd_apply_apply, LieModule.mem_ker, lie_abelian_iff_equiv_lie_abelian, lie_apply, LieIdeal.le_killingCompl_top_of_isLieAbelian, LieModule.traceForm_lieSubalgebra_mk_right, LieAlgebra.IsKilling.chainLength_zero, LieAlgebra.self_module_ker_eq_center, lieAlgebraSelfModule, LieIdeal.incl_coe, LieSubalgebra.ideal_in_normalizer, LieAlgebra.Extension.lie_incl_mem_ker, LieAlgebra.radical_eq_top_of_isSolvable, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieIdeal.derivedSeries_map_le, LieHom.ker_eq_bot, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', IsSl2Triple.mem_toLieSubalgebra_iff, LieSubalgebra.exists_nested_lieIdeal_coe_eq_iff, LieIdeal.incl_isIdealMorphism, LieSubalgebra.coe_normalizer_eq_normalizer, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, LieSubalgebra.coe_toSubmodule, LieAlgebra.rootSpaceProduct_def, LieHom.map_lie, lieEquivMatrix'_apply, LieRinehartAlgebra.toIsScalarTower, LieSubalgebra.sInf_toSubmodule, LieModule.instLinearWeightsOfIsLieAbelian, LieModule.lowerCentralSeries_succ, LieSubmodule.lie_le_inf, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieSubalgebra.coe_ad_pow, LieAlgebra.derivedSeriesOfIdeal_le_self, LieIdeal.lieModule, Derivation.instLieModule, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, Function.Injective.isLieAbelian, LieIdeal.subsingleton_of_bot, LieAlgebra.isSolvable_iff, LieAlgebra.lieCharacterEquivLinearDual_symm_apply, LieSubalgebra.add_mem, LieSubalgebra.mem_toLieSubmodule, LieRinehartAlgebra.Hom.map_smul_apply', LieIdeal.toLieSubalgebra_toSubmodule, LieAlgebra.Extension.lieModuleOf, LieAlgebra.instIsSolvableTensorProduct, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LinearMap.BilinForm.lieInvariant_iff, LieModule.Cohomology.twoCochain_skew, Matrix.instLieModuleForall, LieModule.traceForm_comm, LieAlgebra.IsKilling.killingForm_nondegenerate, LieAlgebra.derivedSeriesOfIdeal_succ, LieDerivation.IsKilling.killingForm_restrict_range_ad, IsSl2Triple.lie_h_e_smul, LieAlgebra.Extension.ringModuleOf_bracket, LieAlgebra.ad_nilpotent_of_nilpotent, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, LieModule.rank_eq_natTrailingDegree, LieSubmodule.mem_baseChange_iff, DirectSum.lieAlgebraComponent_apply, LieAlgebra.IsKilling.chainLength_neg, lie_self, LieAlgebra.IsSimple.isAtom_top, LieAlgebra.ad_pow_lie, LieModule.Cohomology.d₁₂_apply_coe_apply_apply, LieEquiv.right_inv, RootPairing.GeckConstruction.span_range_h'_eq_top, LieDerivation.map_sub, LieIdeal.isLieAbelian_iff, LieModule.Cohomology.mem_twoCochain_iff, LieAlgebra.instIsFaithfulOfHasTrivialRadical, LieModule.Weight.coe_toLinear_eq_zero_iff, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieAlgebra.abelian_iff_derived_one_eq_bot, LieSubalgebra.toSubmodule_injective, LieIdeal.incl_range, Derivation.commutator_coe_linear_map, LieModule.exists_nontrivial_weightSpace_of_isNilpotent, LieIdeal.map_mono, LieAlgebra.IsKilling.apply_coroot_eq_cast, LieSubalgebra.coe_incl', LieModule.Cohomology.d₁₂_apply_apply_ofTrivial, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', FreeLieAlgebra.liftAux_map_mul, DirectSum.lieAlgebraOf_apply, LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, JacobsonNoether.exist_pow_eq_zero_of_le, LieSubmodule.lie_comm, LieAlgebra.center_le_radical, LieAlgebra.SpecialLinear.sl_bracket, coe_lowerCentralSeries_ideal_quot_eq, LieModule.Weight.isZero_neg, LieModule.instIsNilpotentTensor, LieDerivation.coe_zero_linearMap, LieHom.ker_le_comap, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieModule.lie_traceForm_eq_zero, neg_lie, LieDerivation.leibniz_lie, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, of_associative_ring_bracket, LieModule.trace_comp_toEnd_genWeightSpace_eq, RootPairing.GeckConstruction.Ο‰_mul_h, LieIdeal.comap_bracket_le, RootPairing.GeckConstruction.instIsIrreducible, killingForm_apply_apply, LieDerivation.lie_apply, LieIdeal.map_lowerCentralSeries_le, LieAlgebra.smulCommClass, LieSubalgebra.mem_engel_iff, LieAlgebra.lie_smul, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra, LieAlgebra.hasTrivialRadical_iff_no_solvable_ideals, LieModule.isFaithful_iff', two_nsmul_lie_lmul_lmul_add_eq_lie_lmul_lmul_add, LieModule.Cohomology.mem_twoCocycle_iff, LieIdeal.map_sup_ker_eq_map', LieModule.traceForm_eq_zero_of_isTrivial, LieAlgebra.derivedSeriesOfIdeal_antitone, LieSubmodule.lie_baseChange, LieAlgebra.Orthogonal.s_as_blocks, LieModule.toModuleHom_apply, LieAlgebra.IsExtension.ker_eq_bot, LieSubmodule.top_lie_le_iff_le_normalizer, LieIdeal.topEquiv_apply, lie_skew, LieAlgebra.IsSolvable.solvable_int, LieAlgebra.derivedSeries_baseChange, LieAlgebra.derivedSeriesOfIdeal_add_le_add, LieDerivation.toLinearMapLieHom_injective, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieRingModule.add_lie, Matrix.lie_apply, LieDerivation.ad_isIdealMorphism, LieAlgebra.derivedSeries_def, LieIdeal.coe_map_of_surjective, LieDerivation.lie_coe_lieDerivation_apply, smul_lie, LieModule.toEnd_lie, LieAlgebra.ExtendScalars.bracket_tmul, LieModule.Cohomology.add_apply_apply, LieSubalgebra.instIsLieTowerSubtypeMem, sum_lie, LieAlgebra.of_zero, LieRinehartRing.leibniz_smul_right, IsSl2Triple.symm, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, LieSubalgebra.coe_bracket, lie_self, LieHom.toFun_eq_coe, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieHom.isIdealMorphism_iff, LieAlgebra.LoopAlgebra.toFinsupp_single_tmul, LieAlgebra.ad_apply, LieIdeal.isCompl_killingCompl, LieHom.instLinearMapClass, lie_jacobi, LieModule.traceForm_eq_sum_finrank_nsmul, LieAlgebra.conj_ad_apply, LieSubmodule.tmul_mem_baseChange_of_mem, LieAlgebra.toModule_injective, LieAlgebra.Extension.ofTwoCocycle_proj_apply, LieDerivation.IsKilling.rangeAdOrthogonal_carrier, LieHom.quotKerEquivRange_invFun, LieSubalgebra.toSubmodule_eq_bot, LieSubalgebra.coe_ofLe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieIdeal.derivedSeries_eq_bot_iff, LieAlgebra.Extension.bracket, LieIdeal.comap_bracket_incl, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, LieSubmodule.mem_idealizer, LieModule.LinearWeights.map_add, LieIdeal.killingForm_eq, LieAlgebra.center_eq_bot, LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit, LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieModule.isFaithful_iff_ker_eq_bot, LieAlgebra.of_add, LieAlgebra.isLieAbelian_iff_center_eq_top, LieModule.traceForm_lieSubalgebra_mk_left, LieDerivation.commutator_coe_linear_map, LieModule.Cohomology.smul_apply_apply, LieModule.LinearWeights.map_lie, DirectSum.lie_of_same, UniversalEnvelopingAlgebra.ΞΉ_apply, LieHom.coe_toLinearMap, LieModule.Cohomology.instLinearMapClassSubtypeLinearMapIdMemSubmoduleTwoCochain, LieModule.toEnd_pow_lie, LieAlgebra.restrict_killingForm, LieAlgebra.Extension.ofTwoCocycle_incl_apply, LieIdeal.coe_derivedSeries_eq_int, LieIdeal.map_comap_bracket_eq, LieModule.toEnd_baseChange, LieHom.idealRange_eq_map, LieModule.le_max_triv_iff_bracket_eq_bot, LieSubalgebra.coe_toLieSubmodule, LieModule.smul_lie, RootPairing.GeckConstruction.f_lie_v_ne, LieAlgebra.IsKilling.coroot_neg, LieAlgebra.matrix_trace_commutator_zero, LieModule.exists_nontrivial_weightSpace_of_isSolvable, LieSubalgebra.mem_normalizer_iff', LieAlgebra.maxNilpotentIdeal_eq_top_of_isNilpotent, LieHom.idealRange_eq_lieSpan_range, LieIdeal.comap_mono, RootPairing.GeckConstruction.e_lie_v_ne, LieAlgebra.SpecialLinear.val_single, add_lie, LieAlgebra.LoopAlgebra.residuePairing_apply_apply, lieEquivMatrix'_symm_apply, LieSubalgebra.instIsNoetherianSubtypeMem, LieAlgebra.IsKilling.ideal_eq_bot_of_isLieAbelian, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, LieSubalgebra.engel_zero, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieIdeal.incl_idealRange, LieSubmodule.inf_lie, LieAlgebra.HasTrivialRadical.radical_eq_bot, LieModule.chainTop_neg, LieSubalgebra.exists_lieIdeal_coe_eq_iff, LieAlgebra.rank_le_finrank_engel, LieModule.chainBot_neg, LieIdeal.comap_incl_self, LieDerivation.IsKilling.range_ad_eq_top, LieHom.range_toSubmodule, LieModule.Weight.apply_lie, LieAlgebra.isScalarTower, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieAlgebra.of_symm_nsmul, LieDerivation.lie_ad, LieAlgebra.IsSimple.instIsIrreducible, LieAlgebra.Extension.proj_incl, LieHom.mem_ker, LieSubalgebra.normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, Matrix.lie_transpose, LieSubmodule.Quotient.mk_bracket, LieAlgebra.IsKilling.killingCompl_top_eq_bot, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, zero_lie, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieDerivation.leibniz', LieDerivation.map_neg, LieModule.toEnd_eq_zero_iff, LieAlgebra.rank_le_finrank, LieIdeal.map_comap_eq, LieSubalgebra.toSubmodule_eq_top, LieIdeal.comap_map_le, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals, LieAlgebra.isFaithful_self_iff, LieHom.range_subset_idealRange, LieAlgebra.radicalIsSolvable, LieModule.traceForm_genWeightSpace_eq, LieSubalgebra.coe_zero_iff_zero, LieModule.traceForm_apply_apply, LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra, LieIdeal.mem_comap, LieAlgebra.of_symm_zero, LieIdeal.map_bracket_eq, LieModule.Cohomology.twoCochain_val_apply, LieAlgebra.ext_iff, LieRinehartAlgebra.Hom.map_smul_apply, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieIdeal.map_le_iff_le_comap, RootPairing.GeckConstruction.lie_e_lie_f_apply, LieSubalgebra.inf_toSubmodule, LieIdeal.isLieAbelian_of_trivial, LieSubalgebra.sub_mem, LieIdeal.top_toLieSubalgebra, Submodule.exists_lieSubalgebra_coe_eq_iff, LieAlgebra.rank_eq_natTrailingDegree, LieModule.traceForm_apply_lie_apply, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieSubmodule.lieIdeal_oper_eq_linear_span, LieEquiv.toLinearEquiv_injective, LieDerivation.IsKilling.ad_apply_eq_zero_iff, LieAlgebra.mem_corootSpace', LieAlgebra.derivedSeries_lt_top_of_solvable, LieIdeal.derivedSeries_succ_eq_top_iff, LieAlgebra.ad_lie, LieAlgebra.derivedSeries_of_bot_eq_bot, LieHom.toLinearMap_comp, RootPairing.GeckConstruction.f_lie_v_same, LieSubalgebra.zero_mem, LieAlgebra.Extension.ringModuleOf_bracket_proj, IsSl2Triple.lie_h_f_nsmul, LieAlgebra.abelian_derivedAbelianOfIdeal, LieHom.map_le_idealRange, LieSubmodule.lieIdeal_oper_eq_span, LieAlgebra.abelian_iff_derived_succ_eq_bot, LieHom.map_lie', sum_lie_sum, LieAlgebra.isNilpotent_range_ad_iff, LieDerivation.apply_lie_eq_sub, LieAlgebra.IsKilling.traceForm_coroot, LieIdeal.map_le, LieDerivation.coe_add_linearMap, IsSl2Triple.lie_h_e_nsmul, LieModule.chainBotCoeff_neg, LieModule.traceForm_eq_sum_finrank_nsmul_mul, LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieAlgebra.nilpotent_ad_of_nilpotent_algebra, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, LieSubalgebra.coe_lieSpan_submodule_eq_iff, IsSl2Triple.symm_iff, LieModule.Weight.isNonZero_neg, LieAlgebra.derivedSeriesOfIdeal_baseChange, LieAlgebra.center_le_maxNilpotentIdeal, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieSubmodule.lcs_succ, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieHom.mem_idealRange_iff, LieAlgebra.isRegular_iff_finrank_engel_eq_rank, LieAlgebra.IsKilling.ker_restrict_eq_bot_of_isCartanSubalgebra, LieSubalgebra.instIsScalarTowerSubtypeMem, LieAlgebra.ExtendScalars.instLieModule, LieRinehartAlgebra.Hom.apply_lie', LieAlgebra.mem_corootSpace, LieModule.Cohomology.mem_twoCocycle_iff_of_trivial, LieAlgebra.isSolvableAdd, LieAlgebra.isSolvable_tensorProduct_iff, LieIdeal.toSubmodule_killingCompl, LieAlgebra.maxNilpotentIdeal_le_radical, LieAlgebra.lieCharacter_apply_lie, LieAlgebra.HasTrivialRadical.eq_bot_of_isSolvable, LieHom.ker_toSubmodule, LieAlgebra.maxNilpotentIdealIsNilpotent, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, LieIdeal.coe_lcs_eq, LieDerivation.coe_ad_apply_eq_ad_apply, LieAlgebra.lieCharacter_apply_lie', LieAlgebra.of_symm_add, LieAlgebra.SpecialLinear.val_singleSubSingle, LieAlgebra.isNilpotent_iff_forall, LieAlgebra.ad_ker_eq_bot_of_hasTrivialRadical, nsmul_lie, LieAlgebra.IsKilling.span_weight_eq_top, LieSubalgebra.bot_toSubmodule, LieModule.traceForm_flip, LieDerivation.ad_ker_eq_center, LieEquiv.left_inv, LieModule.traceForm_apply_lie_apply', LieDerivation.mem_ad_idealRange_iff, LieDerivation.instLinearMapClass, LieAlgebra.derivedLength_eq_derivedLengthOfIdeal, LieHom.le_ker_iff, LieAlgebra.IsSemisimple.sSupIndep_isAtom, LieAlgebra.isNilpotent_ad_of_isNilpotent, instIsLieTowerSubtypeMemLieSubmodule, LieModule.Weight.toLinear_neg, LieDerivation.IsKilling.killingForm_restrict_range_ad_nondegenerate, LieSubmodule.coe_baseChange, LieModule.chainTopCoeff_neg, LieAlgebra.isSolvableBot, LieAlgebra.IsKilling.ker_killingForm_eq_bot, LieRinehartAlgebra.Hom.toLinearMap'_apply, LieDerivation.coeFn_coe, LieIdeal.comap_bracket_eq, LieSubalgebra.instSMulMemClass, LieAlgebra.LieIdeal.solvable_iff_le_radical, lie_lie, LieDerivation.toFun_eq_coe, LieModule.Cohomology.d₂₃_comp_d₁₂, LieIdeal.incl_apply, LieSubmodule.baseChange_top, LieAlgebra.IsSolvable.solvable, Function.instIsSolvableSubtypeMemLieSubmodule, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, LieAlgebra.IsSimple.non_abelian, LieAlgebra.of_symm_smul, LieSubalgebra.instIsCentralScalarSubtypeMem, LieDerivation.iterate_apply_lie', LieAlgebra.ad_ker_eq_self_module_ker, LieIdeal.map_sup_ker_eq_map, LieEquiv.ofBijective_invFun, IsSl2Triple.lie_e_f, LieAlgebra.IsSimple.isAtom_iff_eq_top, DirectSum.toLieAlgebra_apply, LieModule.range_traceForm_le_span_weight, LieAlgebra.Extension.lie_toKer_apply, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, sub_lie, LieModule.genWeightSpace_neg_add_chainBot, RootPairing.GeckConstruction.lie_e_f_mul_Ο‰, LieAlgebra.ExtendScalars.map_apply_tmul, LieHom.range_eq_ker_iff, LieAlgebra.rootSpaceProduct_tmul, LieModule.traceForm_lieInvariant, LieSubalgebra.mem_normalizer_iff, LieIdeal.ker_incl, LieSubmodule.lie_le_left, LieIdeal.lcs_top, LieRinehartAlgebra.toLieModule, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', LieAlgebra.IsKilling.rootSystem_root_apply, LieIdeal.comap_incl_eq_bot, LieIdeal.map_eq_bot_iff, LieSubalgebra.instIsArtinianSubtypeMem, LieSubalgebra.normalizer_eq_self_of_isCartanSubalgebra, LieSubalgebra.smul_mem, LieSubmodule.lie_coe_mem_lie, LieModule.coe_lowerCentralSeries_ideal_le, LieModule.Weight.coe_neg, LieIdeal.comap_toSubmodule, LieIdeal.map_comap_le, UniversalEnvelopingAlgebra.lift_ΞΉ_apply', LieSubalgebra.eq_bot_iff, RootPairing.GeckConstruction.e_lie_u, LieRinehartAlgebra.Hom.apply_lie, LieModule.Weight.instLinearMapClass, LieAlgebra.isExtension_of_surjective, LieSubalgebra.instAddSubgroupClass, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, LieIdeal.idealizer_eq_normalizer, LieEquiv.instLinearEquivClass, LieAlgebra.IsSimple.eq_bot_or_eq_top, LieModule.ker_eq_bot, LieSubalgebra.coe_ad, LieIdeal.map_sup, LieModule.toEnd_matrix, LieModule.Weight.toLinear_apply, LieSubalgebra.lie_mem, LieHom.idealRange_eq_top_of_surjective, add_lie, LieSubmodule.gc_top_lie_normalizer, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieEquiv.coe_toLinearEquiv, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, LieDerivation.ad_apply_apply, LieSubmodule.baseChange_bot, LieSubalgebra.ad_comp_incl_eq, LieAlgebra.of_nsmul, LieAlgebra.killingForm_of_equiv_apply
toBracket πŸ“–CompOp
8 mathmath: instIsLieTower, leibniz_lie, lie_add, lie_self, LieAlgebra.lie_smul, lie_self, add_lie, LieRingModule.leibniz_lie
toNonUnitalNonAssocRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_lie πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
toAddCommGroup
β€”β€”
leibniz_lie πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
toAddCommGroup
β€”β€”
lie_add πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
toAddCommGroup
β€”β€”
lie_self πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddMonoid.toZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
toAddCommGroup
β€”β€”

LieRingModule

Definitions

NameCategoryTheorems
compLieHom πŸ“–CompOp
2 mathmath: compLieHom_apply, LieModule.compLieHom
toBracket πŸ“–CompOp
202 mathmath: Submodule.exists_lieSubmodule_coe_eq_iff, LieModule.trivial_iff_lower_central_eq_bot, instIsLieTower, LieRinehartRing.lie_smul_eq_mul, DirectSum.bracket_apply, LieDerivation.ad_apply_lieDerivation, LieDerivation.iterate_apply_lie, Function.Surjective.isLieAbelian, LieAlgebra.abelian_radical_of_hasTrivialRadical, LinearMap.BilinForm.isSkewAdjoint_bracket, LieSubalgebra.isLieAbelian_lieSpan_iff, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, zsmul_lie, LieEquiv.map_lie, LieIdeal.coe_bracket_of_module, Matrix.isSkewAdjoint_bracket, DirectSum.lie_module_bracket_apply, lie_sum, LieSubmodule.lie_abelian_iff_lie_self_eq_bot, LieDerivation.apply_lie_eq_add, IsSl2Triple.lie_lie_smul_f, LieSubmodule.lie_le_iff, LieModule.instIsTrivialOfSubsingleton', LieModule.trivial_iff_le_maximal_trivial, LieSubmodule.lieIdeal_oper_eq_linear_span', LieDerivation.inner_apply_apply, LieModule.instIsTrivialSubtypeMemLieSubmoduleMaxTrivSubmodule, LieAlgebra.derivedSeries_of_derivedLength_succ, LieModule.Cohomology.d₂₃_apply, LieModule.mem_weightSpace, LieModule.Cohomology.d₁₂_apply_apply, lie_smul, LieModule.lie_mem_genWeightSpaceChain_of_genWeightSpace_eq_bot_right, LieAlgebra.Extension.toKer_bracket, DirectSum.lie_of_of_ne, LieAlgebra.bracket_ofTwoCocycle, Derivation.bracket_eq_fun, DirectSum.lie_of, LieAlgebra.abelian_radical_iff_solvable_is_abelian, two_nsmul_lie_lmul_lmul_add_add_eq_zero, commutative_ring_iff_abelian_lie_ring, lie_neg, LieRinehartRing.leibniz_mul_right, toEnd_apply_apply, LieModule.mem_ker, LieModule.disjoint_lowerCentralSeries_maxTrivSubmodule_iff, lie_abelian_iff_equiv_lie_abelian, LieRing.lie_apply, LieSubalgebra.ideal_in_normalizer, LieAlgebra.Extension.lie_incl_mem_ker, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, IsSl2Triple.mem_toLieSubalgebra_iff, LieSubalgebra.exists_nested_lieIdeal_coe_eq_iff, LieSubalgebra.coe_bracket_of_module, LieHom.map_lie, Function.Injective.isLieAbelian, LieModule.lie_mem_maxGenEigenspace_toEnd, LieModule.isTrivial_of_nilpotencyLength_le_one, IsSl2Triple.lie_h_e_smul, LieAlgebra.Extension.ringModuleOf_bracket, LieAlgebra.ad_pow_lie, LieModule.Cohomology.d₁₂_apply_coe_apply_apply, LieModule.nilpotencyLength_eq_one_iff, LieHom.lie_apply, LieIdeal.isLieAbelian_iff, LieAlgebra.abelian_iff_derived_one_eq_bot, Derivation.commutator_coe_linear_map, LieDerivation.lie_lieDerivation_apply, LieModule.mem_maxTrivSubmodule, LieModule.Cohomology.d₁₂_apply_apply_ofTrivial, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', FreeLieAlgebra.liftAux_map_mul, LieAlgebra.SpecialLinear.sl_bracket, compLieHom_apply, LieModule.lie_traceForm_eq_zero, neg_lie, LieDerivation.leibniz_lie, LieRing.of_associative_ring_bracket, LieSubmodule.lie_mem, Module.End.lie_apply, LieModule.lie_smul, two_nsmul_lie_lmul_lmul_add_eq_lie_lmul_lmul_add, lie_zsmul, LieModule.toModuleHom_apply, lie_skew, add_lie, Matrix.lie_apply, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg, LieDerivation.lie_coe_lieDerivation_apply, smul_lie, LieModule.toEnd_lie, LieAlgebra.ExtendScalars.bracket_tmul, LieSubalgebra.instIsLieTowerSubtypeMem, sum_lie, LieModule.exists_forall_lie_eq_smul, LieRinehartRing.leibniz_smul_right, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg_aux, LieSubalgebra.coe_bracket, LieHom.isIdealMorphism_iff, LieModule.shiftedGenWeightSpace.coe_lie_shiftedGenWeightSpace_apply, LieAlgebra.ad_apply, lie_jacobi, LieModule.instIsTrivialOfSubsingleton, IsSl2Triple.HasPrimitiveVectorWith.lie_e, TensorProduct.LieModule.lie_tmul_right, LieAlgebra.Extension.bracket, LieSubmodule.mem_idealizer, IsSl2Triple.HasPrimitiveVectorWith.lie_f_pow_toEnd_f, LieAlgebra.isLieAbelian_iff_center_eq_top, LieDerivation.commutator_coe_linear_map, LieModule.LinearWeights.map_lie, DirectSum.lie_of_same, LieModule.toEnd_pow_lie, LieModule.toEnd_apply_apply, LieSubmodule.lie_mem_lie, Module.Dual.lie_apply, LieModule.smul_lie, RootPairing.GeckConstruction.f_lie_v_ne, LieAlgebra.matrix_trace_commutator_zero, LieSubalgebra.mem_normalizer_iff', LieSubmodule.coe_bracket, LieAlgebra.IsSemisimple.non_abelian_of_isAtom, RootPairing.GeckConstruction.e_lie_v_ne, LieAlgebra.abelian_of_le_center, LieDerivation.SMulBracketCommClass.smul_bracket_comm, LieSubalgebra.exists_lieIdeal_coe_eq_iff, IsSl2Triple.HasPrimitiveVectorWith.lie_e_pow_succ_toEnd_f, LieModule.isLieAbelian_of_ker_traceForm_eq_bot, LieModule.Weight.apply_lie, IsSl2Triple.HasPrimitiveVectorWith.lie_h_pow_toEnd_f, LieDerivation.lie_ad, Matrix.lie_transpose, lie_add, LieSubmodule.Quotient.mk_bracket, zero_lie, lie_sub, LieDerivation.leibniz', lie_zero, LieModuleHom.map_lie', lie_eq_smul, LieModule.isTrivial_iff_max_triv_eq_top, RootPairing.GeckConstruction.lie_e_lie_f_apply, LieIdeal.isLieAbelian_of_trivial, Submodule.exists_lieSubalgebra_coe_eq_iff, LieAlgebra.lie_mem_genWeightSpace_of_mem_genWeightSpace, LieModule.traceForm_apply_lie_apply, LieSubmodule.lieIdeal_oper_eq_linear_span, LieAlgebra.Extension.lie_apply_proj_of_leftInverse_eq, LieAlgebra.mem_corootSpace', LieAlgebra.ad_lie, RootPairing.GeckConstruction.f_lie_v_same, LieAlgebra.Extension.ringModuleOf_bracket_proj, IsSl2Triple.lie_h_f_nsmul, LieAlgebra.abelian_derivedAbelianOfIdeal, LieSubmodule.lieIdeal_oper_eq_span, LieAlgebra.abelian_iff_derived_succ_eq_bot, LieHom.map_lie', sum_lie_sum, LieDerivation.apply_lie_eq_sub, IsSl2Triple.lie_h_e_nsmul, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, IsSl2Triple.HasPrimitiveVectorWith.lie_h, LieModuleHom.map_lie, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieRinehartAlgebra.Hom.apply_lie', LieAlgebra.mem_corootSpace, lie_nsmul, LieModule.Cohomology.mem_twoCocycle_iff_of_trivial, LieAlgebra.lieCharacter_apply_lie, lie_mem_right, LieAlgebra.lieCharacter_apply_lie', nsmul_lie, LieModule.lie_mem_genWeightSpaceChain_of_genWeightSpace_eq_bot_left, LieModule.traceForm_apply_lie_apply', lie_mem_left, instIsLieTowerSubtypeMemLieSubmodule, LieSubalgebra.lie_mem_sup_of_mem_normalizer, lie_lie, LieAlgebra.IsSimple.non_abelian, LieSubalgebra.lie_mem', LieAlgebra.IsKilling.mem_sl2SubalgebraOfRoot_iff, LieDerivation.iterate_apply_lie', LieSubmodule.mem_normalizer, IsSl2Triple.lie_e_f, LieAlgebra.Extension.lie_toKer_apply, sub_lie, LieSubmodule.lie_eq_bot_iff, LieAlgebra.rootSpaceProduct_tmul, leibniz_lie, LieSubalgebra.mem_normalizer_iff, lie_add, TrivialLieModule.instIsTrivial, LieSubmodule.lie_coe_mem_lie, LieModuleHom.map_lieβ‚‚, RootPairing.GeckConstruction.e_lie_u, LieRinehartAlgebra.Hom.apply_lie, LieSubalgebra.lie_mem, add_lie, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, LieDerivation.ad_apply_apply
toEnd πŸ“–CompOp
1 mathmath: toEnd_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_lie πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
β€”β€”
compLieHom_apply πŸ“–mathematicalβ€”Bracket.bracket
toBracket
compLieHom
DFunLike.coe
LieHom
LieHom.instFunLike
β€”β€”
leibniz_lie πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toBracket
β€”β€”
lie_add πŸ“–mathematicalβ€”Bracket.bracket
toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
toEnd_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
LieRing.toAddCommGroup
AddMonoidHom.instAddCommGroup
toEnd
Bracket.bracket
toBracket
β€”β€”

LinearMap

Definitions

NameCategoryTheorems
instLieRingModule πŸ“–CompOp
16 mathmath: TensorProduct.LieModule.liftLie_apply, BilinForm.isSkewAdjoint_bracket, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, BilinForm.lieInvariant_iff, LieHom.lie_apply, Derivation.commutator_coe_linear_map, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, instLieModule, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.lie_traceForm_eq_zero, LieDerivation.lie_coe_lieDerivation_apply, TensorProduct.LieModule.lift_apply, LieDerivation.commutator_coe_linear_map, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, LieModuleHom.map_lieβ‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
instLieModule πŸ“–mathematicalβ€”LieModule
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
addCommGroup
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instLieRingModule
β€”smulCommClass_self
ext
smul_lie
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
smul_sub
lie_smul

Module.Dual

Definitions

NameCategoryTheorems
instLieRingModule πŸ“–CompOp
4 mathmath: LinearMap.BilinForm.lieInvariant_iff, LieModule.lie_traceForm_eq_zero, lie_apply, instLieModule

Theorems

NameKindAssumesProvesValidatesDepends On
instLieModule πŸ“–mathematicalβ€”LieModule
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
instLieRingModule
β€”smulCommClass_self
LinearMap.ext
smul_lie
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
mul_neg
lie_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
Bracket.bracket
LieRingModule.toBracket
LinearMap.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
instLieRingModule
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”

(root)

Definitions

NameCategoryTheorems
IsLieTower πŸ“–CompData
4 mathmath: instIsLieTower, LieSubalgebra.instIsLieTowerSubtypeMem, instIsLieTowerSubtypeMemLieSubmodule_1, instIsLieTowerSubtypeMemLieSubmodule
LieAlgebra πŸ“–CompData
2 mathmath: instSubsingletonLieAlgebraRat, LieAlgebra.toModule_injective
LieEquiv πŸ“–CompData
51 mathmath: skewAdjointMatricesLieSubalgebraEquivTranspose_apply, LieEquiv.map_lie, Matrix.lieConj_apply, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, skewAdjointLieSubalgebraEquiv_apply, LieSubalgebra.equivOfLe_apply, LieEquiv.one_apply, skewAdjointLieSubalgebraEquiv_symm_apply, LieEquiv.coe_injective, LieHom.quotKerEquivRange_toFun, LieHom.equivRangeOfInjective_apply, LieAlgebra.Extension.toKer_bracket, LieAlgebra.Orthogonal.indefiniteDiagonal_assoc, lieEquivMatrix'_apply, LieDerivation.exp_map_apply, LieEquiv.ext_iff, LieAlgebra.Extension.ringModuleOf_bracket, LieEquiv.ofEq_apply, LieEquiv.trans_apply, LieEquiv.ofSubalgebras_apply, Matrix.reindexLieEquiv_apply, LieAlgebra.LieEquiv.ofCoboundary_toFun, LieEquiv.lieSubalgebraMap_apply, AlgEquiv.toLieEquiv_symm_apply, Matrix.lieConj_symm_apply, LieEquiv.apply_symm_apply, LieIdeal.topEquiv_apply, LinearEquiv.lieConj_apply, LieAlgebra.conj_ad_apply, LieEquiv.symm_apply_apply, LieAlgebra.Extension.bracket, RootPairing.GeckConstruction.Ο‰Conj_toFun, LieEquiv.symm_bijective, lieEquivMatrix'_symm_apply, LieSubalgebra.topEquiv_apply, LieEquiv.ofSubalgebras_symm_apply, RootPairing.GeckConstruction.Ο‰Conj_mem_of_mem, LieEquiv.ofInjective_apply, LieEquiv.toLinearEquiv_injective, LieAlgebra.Extension.ringModuleOf_bracket_proj, LieEquiv.ofBijective_toFun, LieEquiv.coe_coe, skewAdjointMatricesLieSubalgebraEquiv_apply, AlgEquiv.toLieEquiv_apply, LieEquiv.refl_apply, LieAlgebra.Extension.lie_toKer_apply, LieEquiv.coe_toLieHom, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, LieEquiv.instLinearEquivClass, LieEquiv.coe_toLinearEquiv, LieAlgebra.killingForm_of_equiv_apply
LieHom πŸ“–CompData
184 mathmath: LieEquiv.bijective, LieHom.coe_zero, LieAlgebra.Extension.incl_apply_mem_ker, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieDerivation.lie_der_ad_eq_ad_der, LieDerivation.ad_apply_lieDerivation, LieSubalgebra.inclusion_apply, LieHom.ext_iff, LieHom.zero_apply, LieHom.congr_fun, LieModule.toEnd_pow_apply_map, LieEquiv.injective, LieModule.trace_toEnd_eq_zero_of_mem_lcs, LieHom.surjective_rangeRestrict, LieAlgebra.mapsTo_toEnd_genWeightSpace_add_of_mem_rootSpace, LieAlgebra.finrank_engel, LieSubalgebra.equivOfLe_apply, LieHom.mem_idealRange, LieAlgebra.isRegular_iff_natTrailingDegree_charpoly_eq_rank, LieModule.exists_genWeightSpace_zero_le_ker_of_isNoetherian, LieSubalgebra.toEnd_eq, LieDerivation.IsKilling.exists_eq_ad, LieModule.isNilpotent_toEnd_genWeightSpace_zero, LieIdeal.incl_injective, LieHom.coe_id, LieModule.trace_toEnd_genWeightSpace, UniversalEnvelopingAlgebra.lift_unique, LieModule.shiftedGenWeightSpace.toEnd_eq, FreeLieAlgebra.of_comp_lift, LieHom.one_apply, LieSubmodule.Quotient.toEnd_comp_mk', LieModule.mem_posFittingCompOf, LieHom.mem_range_self, LieAlgebra.Extension.toKer_bracket, LieAlgebra.rank_le_natTrailingDegree_charpoly_ad, LieSubmodule.lie_top_eq_of_span_sup_eq_top, LieAlgebra.ad_eq_lmul_left_sub_lmul_right, LieModule.isNilpotent_toEnd_of_isNilpotent, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, LieSubmodule.coe_map_toEnd_le, LieModule.mem_genWeightSpace, UniversalEnvelopingAlgebra.ΞΉ_comp_lift, FreeLieAlgebra.lift_comp_of, LieAlgebra.Extension.incl_injective, LieAlgebra.Extension.lie_incl_mem_ker, LieSubalgebra.toEnd_mk, LieHom.ker_eq_bot, LieModule.exists_genWeightSpace_le_ker_of_isNoetherian, LieModule.coe_genWeightSpaceOf_zero, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, LieHom.map_lie, LieSubmodule.traceForm_eq_zero_of_isTrivial, LieModule.weight_vector_multiplication, LieSubalgebra.coe_ad_pow, LieRinehartAlgebra.Hom.map_smul_apply', RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieModule.IsTriangularizable.maxGenEigenspace_eq_top, LieModule.isFaithful_iff, LieAlgebra.Extension.ringModuleOf_bracket, LieSubalgebra.coe_inclusion, LieSubmodule.toEnd_comp_subtype_mem, LieAlgebra.ad_nilpotent_of_nilpotent, DirectSum.lieAlgebraComponent_apply, LieAlgebra.ad_pow_lie, LieHom.comp_apply, LieModule.isNilpotent_toEnd_of_isNilpotentβ‚‚, LieSubmodule.mapsTo_pow_toEnd_sub_algebraMap, LieHom.toNonUnitalAlgHom_toFun, LieModule.exists_forall_pow_toEnd_eq_zero, DirectSum.lieAlgebraOf_apply, LieDerivation.IsKilling.ad_mem_orthogonal_of_mem_orthogonal, JacobsonNoether.exist_pow_eq_zero_of_le, LieHom.rangeRestrict_apply, LieRingModule.compLieHom_apply, LieSubmodule.toEnd_restrict_eq_toEnd, LieIdeal.coe_inclusion, UniversalEnvelopingAlgebra.lift_ΞΉ_apply, LieHom.coe_range, FreeLieAlgebra.lift_unique, LieModule.IsFaithful.injective_toEnd, LieSubalgebra.mem_comap, LieIdeal.inclusion_injective, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_apply, LieHom.range_eq_top, killingForm_apply_apply, LieSubalgebra.mem_engel_iff, LieModule.iterate_toEnd_mem_lowerCentralSeriesβ‚‚, LieHom.coe_comp, IsSl2Triple.HasPrimitiveVectorWith.pow_toEnd_f_eq_zero_of_eq_nat, LieModule.toEnd_eq_iff, LieHom.id_apply, LieModule.isNilpotent_toEnd_of_mem_rootSpace, UniversalEnvelopingAlgebra.lift_symm_apply, LieHom.range_coe, LieDerivation.toLinearMapLieHom_injective, LieEquiv.surjective, LieModule.toEnd_lie, LieHom.toFun_eq_coe, LieHom.isIdealMorphism_iff, LieAlgebra.ad_apply, LieAlgebra.toEnd_pow_apply_mem, LieHom.instLinearMapClass, LieModule.coe_genWeightSpace_of_top, LieAlgebra.conj_ad_apply, LieAlgebra.Extension.ofTwoCocycle_proj_apply, LieSubalgebra.inclusion_injective, LieHom.coe_mk, LieModule.isRegular_iff_natTrailingDegree_charpoly_eq_rank, IsSl2Triple.HasPrimitiveVectorWith.lie_f_pow_toEnd_f, UniversalEnvelopingAlgebra.ΞΉ_apply, LieHom.coe_toLinearMap, LieModule.toEnd_pow_lie, LieSubmodule.coe_toEnd, LieModule.toEnd_apply_apply, LieAlgebra.Extension.ofTwoCocycle_incl_apply, LieHom.coe_injective, LieModule.commute_toEnd_of_mem_center_right, LieHom.coe_one, LieModule.toEnd_baseChange, FreeLieAlgebra.hom_ext_iff, LieHom.toNonUnitalAlgHom_apply, LieModule.isNilpotent_iff_forall, LieModule.isNilpotent_toEnd_sub_algebraMap, AlgHom.coe_toLieHom, IsSl2Triple.HasPrimitiveVectorWith.lie_e_pow_succ_toEnd_f, IsSl2Triple.HasPrimitiveVectorWith.lie_h_pow_toEnd_f, LieDerivation.lie_ad, LieAlgebra.Extension.proj_incl, LieHom.mem_ker, LieSubalgebra.coe_incl, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_symm_apply, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieModule.toEnd_eq_zero_iff, LieAlgebra.isNilpotent_ad_of_mem_rootSpace, LieModule.traceForm_apply_apply, LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra, LieIdeal.mem_comap, LieModule.trace_toEnd_genWeightSpaceChain_eq_zero, LieRinehartAlgebra.Hom.map_smul_apply, LieModule.maxGenEigenSpace_toEnd_eq_top, FreeLieAlgebra.lift_symm_apply, LieDerivation.IsKilling.ad_apply_eq_zero_iff, LieSubalgebra.mem_map, LieAlgebra.ad_lie, LieModule.isNilpotent_iff_forall', LieAlgebra.Extension.ringModuleOf_bracket_proj, LieSubmodule.coe_toEnd_pow, LieModule.mem_genWeightSpaceOf, LieDerivation.injective_ad_of_center_eq_bot, LieIdeal.map_le, LieAlgebra.nilpotent_ad_of_nilpotent_algebra, LieAlgebra.Extension.proj_surjective, LieHom.mem_range, FreeLieAlgebra.lift_of_apply, LieAlgebra.mem_zeroRootSubalgebra, LieHom.mem_idealRange_iff, LieRinehartAlgebra.Hom.apply_lie', LieModule.iterate_toEnd_mem_lowerCentralSeries, LieDerivation.coe_ad_apply_eq_ad_apply, LieEquiv.coe_coe, LieAlgebra.isNilpotent_iff_forall, LieDerivation.mem_ad_idealRange_iff, LieHom.le_ker_iff, LieAlgebra.isNilpotent_ad_of_isNilpotent, LieRinehartAlgebra.Hom.toLinearMap'_apply, AlgHom.toLieHom_apply, LieIdeal.incl_apply, LieModule.commute_toEnd_of_mem_center_left, DirectSum.toLieAlgebra_apply, LieAlgebra.Extension.lie_toKer_apply, LieEquiv.coe_toLieHom, LieAlgebra.ExtendScalars.map_apply_tmul, LieHom.range_eq_ker_iff, LieIdeal.inclusion_apply, UniversalEnvelopingAlgebra.lift_ΞΉ_apply', LieIdeal.mem_map, LieRinehartAlgebra.Hom.apply_lie, LieModule.Weight.hasEigenvalueAt, LieModule.rank_le_natTrailingDegree_charpoly_ad, LieSubalgebra.coe_ad, LieModule.toEnd_pow_comp_lieHom, LieHom.toNonUnitalAlgHom_injective, LieDerivation.ad_apply_apply, LieSubalgebra.ad_comp_incl_eq
LieModule πŸ“–CompData
20 mathmath: LieModule.shiftedGenWeightSpace.instSubtypeMemLieSubmodule, LieModule.ofAssociativeModule, instLieModuleInt, Module.End.instLieModule, TrivialLieModule.instLieModule, lieAlgebraSelfModule, LieIdeal.lieModule, Derivation.instLieModule, LieAlgebra.Extension.lieModuleOf, Matrix.instLieModuleForall, LinearMap.instLieModule, LieSubalgebra.lieModule, LieSubmodule.Quotient.lieQuotientLieModule, LieDerivation.instLieModule, LieAlgebra.ExtendScalars.instLieModule, TensorProduct.LieModule.lieModule, LieSubmodule.instLieModule, Module.Dual.instLieModule, LieRinehartAlgebra.toLieModule, LieModule.compLieHom
LieModuleEquiv πŸ“–CompData
20 mathmath: LieModuleEquiv.injective, LieModuleEquiv.refl_apply, LieModuleEquiv.apply_eq_iff_eq_symm_apply, LieModuleEquiv.toEquiv_injective, LieModuleEquiv.symm_apply_apply, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, LieModuleEquiv.trans_apply, LieModuleEquiv.instLinearEquivClass, LieModuleEquiv.coe_toLinearEquiv, TensorProduct.LieModule.lift_apply, LieModuleEquiv.ofTop_apply, LieModuleEquiv.coe_mk, LieModuleEquiv.ext_iff, LieModuleEquiv.symm_bijective, LieModuleEquiv.apply_symm_apply, LieModule.coe_maxTrivEquiv_apply, LieModuleEquiv.coe_toLieModuleHom, LieModuleEquiv.coe_coe, LieModuleEquiv.surjective, LieModuleEquiv.one_apply
LieModuleHom πŸ“–CompData
63 mathmath: LieModuleHom.mem_range, TensorProduct.LieModule.liftLie_apply, LieSubmodule.coe_map, LieModule.toEnd_pow_apply_map, LieSubmodule.Quotient.mk_eq_zero, LieModuleHom.zsmul_apply, LieSubmodule.mem_comap, LieModuleHom.ker_eq_bot, LieModuleEquiv.toEquiv_mk, LieModuleHom.coe_mk, LieModuleHom.instLinearMapClass, LieModuleHom.coe_id, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.incl_apply, LieModuleHom.mem_ker, LieModuleHom.coe_toLinearMap, LieModuleHom.comp_apply, LieModuleHom.coe_smul, LieModuleHom.coe_zsmul, LieModuleHom.coe_injective, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieModuleHom.smul_apply, LieModuleHom.nsmul_apply, LieModuleHom.coe_neg, TensorProduct.LieModule.map_tmul, LieModuleHom.coe_restrictLie, LieSubalgebra.coe_incl', TensorProduct.LieModule.coe_liftLie_eq_lift_coe, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieModuleHom.coe_range, LieSubmodule.coe_inclusion, LieModuleHom.comp_ker_incl, LieModule.toModuleHom_apply, LieModuleHom.zero_apply, LieModuleHom.neg_apply, LieModuleHom.range_eq_top, LieModuleHom.coe_add, LieSubmodule.Quotient.surjective_mk', LieModuleHom.coe_comp, LieModuleEquiv.coe_mk, LieSubmodule.incl_eq_val, LieModuleHom.coe_nsmul, LieSubmodule.inclusion_apply, LieModuleHom.id_apply, LieModuleHom.coe_zero, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieModuleHom.add_apply, LieSubmodule.mem_map_of_mem, LieSubmodule.inclusion_injective, LieModuleHom.map_lie, LieModuleEquiv.coe_toLieModuleHom, LieModuleHom.coe_sub, LieModule.coe_maxTrivHom_apply, LieModuleHom.sub_apply, LieModuleHom.ext_iff, LieModuleEquiv.coe_coe, LieModuleHom.congr_fun, LieSubmodule.Quotient.mk'_apply, LieSubmodule.injective_incl, LieAlgebra.rootSpaceProduct_tmul, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.mem_map, LieModuleHom.map_lieβ‚‚
LieRing πŸ“–CompDataβ€”
LieRingModule πŸ“–CompDataβ€”
lieRingSelfModule πŸ“–CompOp
340 mathmath: LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map, LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieAlgebra.Extension.incl_apply_mem_ker, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieDerivation.lie_der_ad_eq_ad_der, LieDerivation.instNoetherian, DirectSum.bracket_apply, LieDerivation.ad_apply_lieDerivation, LieDerivation.iterate_apply_lie, LieIdeal.map_bracket_le, Function.Surjective.isLieAbelian, LieDerivation.IsKilling.instIsKilling_range_ad, LieAlgebra.abelian_radical_of_hasTrivialRadical, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, LieIdeal.comap_incl_eq_top, LieAlgebra.derivedLength_zero, LieSubalgebra.isLieAbelian_lieSpan_iff, LieIdeal.restrict_killingForm, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, LieEquiv.map_lie, LieIdeal.coe_bracket_of_module, Matrix.isSkewAdjoint_bracket, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieAlgebra.isSolvable_iff_int, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, LieModule.derivedSeries_le_lowerCentralSeries, LieHom.mem_idealRange, LieSubmodule.bot_lie, LieIdeal.gc_map_comap, LieSubmodule.lie_abelian_iff_lie_self_eq_bot, LieIdeal.map_comap_incl, LieDerivation.IsKilling.exists_eq_ad, LieAlgebra.coe_zeroRootSubalgebra, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, LieAlgebra.hasTrivialRadical_iff, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, LieIdeal.incl_injective, LieDerivation.apply_lie_eq_add, LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap, IsSl2Triple.lie_lie_smul_f, LieAlgebra.IsSemisimple.booleanGenerators, LieAlgebra.derivedSeriesOfIdeal_succ_le, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieSubmodule.lieIdeal_oper_eq_linear_span', LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, LieDerivation.commutator_apply, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieIdeal.lowerCentralSeries_map_eq, LieAlgebra.derivedSeries_of_derivedLength_succ, LieModule.Cohomology.d₂₃_apply, LieIdeal.coe_killingCompl_top, LieModule.Cohomology.d₁₂_apply_apply, LieAlgebra.Extension.toKer_bracket, LieAlgebra.non_trivial_center_of_isNilpotent, DirectSum.lie_of_of_ne, LieAlgebra.bracket_ofTwoCocycle, LieIdeal.instIsNilpotentSubtypeMemLieSubmoduleOfIsNilpotent, LieIdeal.coe_toLieSubalgebra, LieSubmodule.lie_top_eq_of_span_sup_eq_top, DirectSum.lie_of, LieAlgebra.abelian_of_solvable_ideal_eq_bot_iff, LieIdeal.mem_killingCompl, LieAlgebra.abelian_radical_iff_solvable_is_abelian, two_nsmul_lie_lmul_lmul_add_add_eq_zero, LieModule.instIsTriangularizableSubtypeMemLieSubmodule, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, LieSubmodule.sup_lie, commutative_ring_iff_abelian_lie_ring, LieModule.mem_ker, lie_abelian_iff_equiv_lie_abelian, LieRing.lie_apply, LieIdeal.le_killingCompl_top_of_isLieAbelian, LieAlgebra.IsKilling.chainLength_zero, LieAlgebra.self_module_ker_eq_center, lieAlgebraSelfModule, LieIdeal.incl_coe, LieSubalgebra.ideal_in_normalizer, LieAlgebra.Extension.lie_incl_mem_ker, LieAlgebra.radical_eq_top_of_isSolvable, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieIdeal.derivedSeries_map_le, LieHom.ker_eq_bot, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', IsSl2Triple.mem_toLieSubalgebra_iff, LieSubalgebra.exists_nested_lieIdeal_coe_eq_iff, LieIdeal.incl_isIdealMorphism, LieSubalgebra.coe_normalizer_eq_normalizer, LieAlgebra.rootSpaceProduct_def, LieHom.map_lie, LieModule.instLinearWeightsOfIsLieAbelian, LieModule.lowerCentralSeries_succ, LieSubmodule.lie_le_inf, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieAlgebra.derivedSeriesOfIdeal_le_self, LieIdeal.lieModule, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, Function.Injective.isLieAbelian, LieIdeal.subsingleton_of_bot, LieAlgebra.isSolvable_iff, LieSubalgebra.mem_toLieSubmodule, LieIdeal.toLieSubalgebra_toSubmodule, LieAlgebra.derivedSeriesOfIdeal_succ, LieDerivation.IsKilling.killingForm_restrict_range_ad, IsSl2Triple.lie_h_e_smul, LieAlgebra.Extension.ringModuleOf_bracket, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, LieAlgebra.IsKilling.chainLength_neg, LieAlgebra.IsSimple.isAtom_top, LieAlgebra.ad_pow_lie, LieModule.Cohomology.d₁₂_apply_coe_apply_apply, LieIdeal.isLieAbelian_iff, LieAlgebra.instIsFaithfulOfHasTrivialRadical, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieAlgebra.abelian_iff_derived_one_eq_bot, LieIdeal.incl_range, LieIdeal.map_mono, LieAlgebra.IsKilling.apply_coroot_eq_cast, LieSubalgebra.coe_incl', LieModule.Cohomology.d₁₂_apply_apply_ofTrivial, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', FreeLieAlgebra.liftAux_map_mul, LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieSubmodule.lie_comm, LieAlgebra.center_le_radical, LieAlgebra.SpecialLinear.sl_bracket, coe_lowerCentralSeries_ideal_quot_eq, LieModule.Weight.isZero_neg, LieHom.ker_le_comap, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieModule.lie_traceForm_eq_zero, LieDerivation.leibniz_lie, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, LieRing.of_associative_ring_bracket, LieIdeal.comap_bracket_le, LieDerivation.lie_apply, LieIdeal.map_lowerCentralSeries_le, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra, LieAlgebra.hasTrivialRadical_iff_no_solvable_ideals, two_nsmul_lie_lmul_lmul_add_eq_lie_lmul_lmul_add, LieIdeal.map_sup_ker_eq_map', LieAlgebra.derivedSeriesOfIdeal_antitone, LieSubmodule.lie_baseChange, LieModule.toModuleHom_apply, LieAlgebra.IsExtension.ker_eq_bot, LieSubmodule.top_lie_le_iff_le_normalizer, LieIdeal.topEquiv_apply, lie_skew, LieAlgebra.IsSolvable.solvable_int, LieAlgebra.derivedSeries_baseChange, LieAlgebra.derivedSeriesOfIdeal_add_le_add, LieDerivation.toLinearMapLieHom_injective, LieDerivation.ad_isIdealMorphism, LieAlgebra.derivedSeries_def, LieIdeal.coe_map_of_surjective, LieDerivation.lie_coe_lieDerivation_apply, LieSubalgebra.instIsLieTowerSubtypeMem, LieRinehartRing.leibniz_smul_right, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, LieSubalgebra.coe_bracket, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieHom.isIdealMorphism_iff, LieAlgebra.ad_apply, LieIdeal.isCompl_killingCompl, lie_jacobi, LieDerivation.IsKilling.rangeAdOrthogonal_carrier, LieHom.quotKerEquivRange_invFun, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieIdeal.derivedSeries_eq_bot_iff, LieAlgebra.Extension.bracket, LieIdeal.comap_bracket_incl, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, LieSubmodule.mem_idealizer, LieIdeal.killingForm_eq, LieAlgebra.center_eq_bot, LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit, LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieModule.isFaithful_iff_ker_eq_bot, LieAlgebra.isLieAbelian_iff_center_eq_top, LieDerivation.commutator_coe_linear_map, LieModule.LinearWeights.map_lie, DirectSum.lie_of_same, LieAlgebra.restrict_killingForm, LieIdeal.coe_derivedSeries_eq_int, LieIdeal.map_comap_bracket_eq, LieHom.idealRange_eq_map, LieModule.le_max_triv_iff_bracket_eq_bot, LieSubalgebra.coe_toLieSubmodule, LieAlgebra.IsKilling.coroot_neg, LieAlgebra.matrix_trace_commutator_zero, LieSubalgebra.mem_normalizer_iff', LieAlgebra.maxNilpotentIdeal_eq_top_of_isNilpotent, LieHom.idealRange_eq_lieSpan_range, LieIdeal.comap_mono, LieAlgebra.IsKilling.ideal_eq_bot_of_isLieAbelian, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieIdeal.incl_idealRange, LieSubmodule.inf_lie, LieAlgebra.HasTrivialRadical.radical_eq_bot, LieSubalgebra.exists_lieIdeal_coe_eq_iff, LieIdeal.comap_incl_self, LieDerivation.IsKilling.range_ad_eq_top, LieModule.isLieAbelian_of_ker_traceForm_eq_bot, LieModule.Weight.apply_lie, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieDerivation.lie_ad, LieAlgebra.IsSimple.instIsIrreducible, LieHom.mem_ker, LieSubalgebra.normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, Matrix.lie_transpose, LieSubmodule.Quotient.mk_bracket, LieAlgebra.IsKilling.killingCompl_top_eq_bot, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieDerivation.leibniz', LieIdeal.map_comap_eq, LieIdeal.comap_map_le, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals, LieAlgebra.isFaithful_self_iff, LieHom.range_subset_idealRange, LieAlgebra.radicalIsSolvable, LieIdeal.mem_comap, LieIdeal.map_bracket_eq, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieIdeal.map_le_iff_le_comap, LieIdeal.isLieAbelian_of_trivial, LieIdeal.top_toLieSubalgebra, Submodule.exists_lieSubalgebra_coe_eq_iff, LieModule.traceForm_apply_lie_apply, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieSubmodule.lieIdeal_oper_eq_linear_span, LieDerivation.IsKilling.ad_apply_eq_zero_iff, LieAlgebra.Extension.lie_apply_proj_of_leftInverse_eq, LieAlgebra.mem_corootSpace', LieAlgebra.derivedSeries_lt_top_of_solvable, LieIdeal.derivedSeries_succ_eq_top_iff, LieAlgebra.ad_lie, LieAlgebra.derivedSeries_of_bot_eq_bot, LieAlgebra.Extension.ringModuleOf_bracket_proj, IsSl2Triple.lie_h_f_nsmul, LieAlgebra.abelian_derivedAbelianOfIdeal, LieHom.map_le_idealRange, LieSubmodule.lieIdeal_oper_eq_span, LieAlgebra.abelian_iff_derived_succ_eq_bot, LieHom.map_lie', LieDerivation.apply_lie_eq_sub, LieAlgebra.IsKilling.traceForm_coroot, LieIdeal.map_le, IsSl2Triple.lie_h_e_nsmul, LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, LieModule.Weight.isNonZero_neg, LieAlgebra.derivedSeriesOfIdeal_baseChange, LieSubmodule.exists_smul_add_of_span_sup_eq_top, LieAlgebra.center_le_maxNilpotentIdeal, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieSubmodule.lcs_succ, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieHom.mem_idealRange_iff, LieAlgebra.mem_corootSpace, LieModule.Cohomology.mem_twoCocycle_iff_of_trivial, LieAlgebra.isSolvableAdd, LieIdeal.toSubmodule_killingCompl, LieAlgebra.maxNilpotentIdeal_le_radical, LieAlgebra.lieCharacter_apply_lie, LieAlgebra.HasTrivialRadical.eq_bot_of_isSolvable, LieHom.ker_toSubmodule, LieAlgebra.maxNilpotentIdealIsNilpotent, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, LieIdeal.coe_lcs_eq, LieDerivation.coe_ad_apply_eq_ad_apply, LieAlgebra.lieCharacter_apply_lie', LieAlgebra.ad_ker_eq_bot_of_hasTrivialRadical, LieAlgebra.IsKilling.span_weight_eq_top, LieDerivation.ad_ker_eq_center, LieModule.traceForm_apply_lie_apply', LieDerivation.mem_ad_idealRange_iff, LieAlgebra.derivedLength_eq_derivedLengthOfIdeal, LieHom.le_ker_iff, LieAlgebra.IsSemisimple.sSupIndep_isAtom, instIsLieTowerSubtypeMemLieSubmodule, LieModule.Weight.toLinear_neg, LieDerivation.IsKilling.killingForm_restrict_range_ad_nondegenerate, LieSubalgebra.lie_mem_sup_of_mem_normalizer, LieAlgebra.Extension.twoCocycleOf_coe_coe, LieAlgebra.isSolvableBot, LieIdeal.comap_bracket_eq, LieAlgebra.LieIdeal.solvable_iff_le_radical, lie_lie, LieIdeal.incl_apply, LieAlgebra.IsSolvable.solvable, Function.instIsSolvableSubtypeMemLieSubmodule, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, LieAlgebra.IsSimple.non_abelian, LieSubalgebra.lie_mem', LieDerivation.iterate_apply_lie', LieAlgebra.ad_ker_eq_self_module_ker, LieIdeal.map_sup_ker_eq_map, IsSl2Triple.lie_e_f, LieAlgebra.IsSimple.isAtom_iff_eq_top, LieAlgebra.Extension.lie_toKer_apply, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, LieAlgebra.rootSpaceProduct_tmul, LieModule.traceForm_lieInvariant, LieSubalgebra.mem_normalizer_iff, LieIdeal.ker_incl, LieSubmodule.lie_le_left, LieIdeal.lcs_top, LieAlgebra.IsKilling.rootSystem_root_apply, LieIdeal.comap_incl_eq_bot, LieIdeal.map_eq_bot_iff, LieSubalgebra.normalizer_eq_self_of_isCartanSubalgebra, LieSubmodule.lie_coe_mem_lie, LieModule.coe_lowerCentralSeries_ideal_le, LieModule.Weight.coe_neg, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, LieIdeal.comap_toSubmodule, LieIdeal.map_comap_le, LieAlgebra.isExtension_of_surjective, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, LieIdeal.idealizer_eq_normalizer, LieAlgebra.IsSimple.eq_bot_or_eq_top, LieModule.ker_eq_bot, LieIdeal.map_sup, LieSubalgebra.lie_mem, LieHom.idealRange_eq_top_of_surjective, LieSubmodule.gc_top_lie_normalizer, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, LieDerivation.ad_apply_apply
Β«term_→ₗ⁅_,_⁆_Β» πŸ“–CompOpβ€”
Β«term_→ₗ⁅_⁆_Β» πŸ“–CompOpβ€”
Β«term_≃ₗ⁅_,_⁆_Β» πŸ“–CompOpβ€”
Β«term_≃ₗ⁅_⁆_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
β€”LieRingModule.add_lie
instIsLieTower πŸ“–mathematicalβ€”IsLieTower
LieRing.toBracket
LieRingModule.toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”LieRingModule.leibniz_lie
instLieModuleInt πŸ“–mathematicalβ€”LieModule
Int.instCommRing
LieRing.instLieAlgebra
AddCommGroup.toIntModule
β€”zsmul_lie
lie_zsmul
instSubsingletonLieAlgebraRat πŸ“–mathematicalβ€”LieAlgebra
Rat.commRing
β€”Function.Injective.subsingleton
LieAlgebra.toModule_injective
subsingleton_rat_module
leibniz_lie πŸ“–mathematicalβ€”Bracket.bracketβ€”IsLieTower.leibniz_lie
lieAlgebraSelfModule πŸ“–mathematicalβ€”LieModule
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
β€”lie_skew
LieAlgebra.lie_smul
smul_neg
lie_add πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”LieRingModule.lie_add
lie_jacobi πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_neg
lie_neg
lie_skew
lie_lie
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
add_zero
Mathlib.Tactic.Abel.zero_termg
lie_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”leibniz_lie
instIsLieTower
add_sub_cancel_right
lie_neg πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”sub_eq_zero
sub_neg_eq_add
lie_add
neg_add_cancel
lie_zero
lie_nsmul πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”AddMonoidHom.map_nsmul
lie_zero
lie_add
lie_self πŸ“–mathematicalβ€”Bracket.bracket
LieRing.toBracket
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”LieRing.lie_self
lie_skew πŸ“–mathematicalβ€”NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”lie_add
lie_self
add_lie
zero_add
add_zero
lie_smul πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”LieModule.lie_smul
lie_sub πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
lie_add
lie_neg
lie_sum πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
Finset.sum
AddCommGroup.toAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
lie_swap_lie πŸ“–mathematicalβ€”Bracket.bracket
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”leibniz_lie
add_sub_cancel_right
sub_add_cancel_right
lie_zero πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”AddMonoidHom.map_zero
lie_add
lie_zsmul πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”AddMonoidHom.map_zsmul
lie_zero
lie_add
neg_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”sub_eq_zero
sub_neg_eq_add
add_lie
neg_add_cancel
zero_lie
nsmul_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
β€”AddMonoidHom.map_nsmul
zero_lie
add_lie
smul_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
β€”LieModule.smul_lie
sub_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
β€”sub_eq_add_neg
add_lie
neg_lie
sum_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
Finset.sum
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
sum_lie_sum πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
Finset.sum
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
β€”sum_lie
Finset.sum_congr
lie_sum
zero_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”AddMonoidHom.map_zero
add_lie
zsmul_lie πŸ“–mathematicalβ€”Bracket.bracket
LieRingModule.toBracket
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
β€”AddMonoidHom.map_zsmul
zero_lie
add_lie

---

← Back to Index