Documentation Verification Report

CartanExists

πŸ“ Source: Mathlib/Algebra/Lie/CartanExists.lean

Statistics

MetricCount
Definitions0
Theoremsengel_isBot_of_isMin, lieCharpoly_coeff_natDegree, lieCharpoly_map_eval, lieCharpoly_monic, lieCharpoly_natDegree, exists_isCartanSubalgebra_engel, exists_isCartanSubalgebra_engel_of_finrank_le_card
7
Total7

LieAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
engel_isBot_of_isMin πŸ“–mathematicalLieSubalgebra
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
LieSubalgebra.instPartialOrder_1
Set
Set.instMembership
setOf
SetLike.instMembership
LieSubalgebra.instSetLike
LieSubalgebra.engel
IsMin
Set.Elem
IsBotβ€”LieSubalgebra.lie_mem
eq_or_ne
LieSubalgebra.engel_zero
LieSubmodule.instAddSubgroupClass
LieSubmodule.instSMulMemClass
LE.le.eq_or_lt
Submodule.finrank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
LieSubalgebra.toSubmodule_injective
Submodule.eq_top_of_finrank_eq
LieSubalgebra.instAddSubgroupClass
LieSubmodule.instLieModule
LieSubalgebra.lieModule
lieAlgebraSelfModule
Module.IsNoetherian.finite
LieSubalgebra.instIsNoetherianSubtypeMem
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Module.Free.of_divisionRing
LieSubmodule.instIsNoetherianSubtypeMem
LieSubmodule.Quotient.lieQuotientLieModule
LieSubmodule.Quotient.isNoetherian
Polynomial.eq_zero_of_forall_eval_zero_of_natDegree_lt_card
instIsDomain
Polynomial.coe_evalRingHom
Polynomial.coeff_map
smulCommClass_self
IsScalarTower.left
engel_isBot_of_isMin.lieCharpoly_map_eval
Polynomial.constantCoeff_apply
LinearMap.charpoly_constantCoeff_eq_zero_iff
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
AddSubmonoidClass.toZeroMemClass
LieSubalgebra.self_mem_engel
Subtype.coe_ne_coe
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LieHom.instLinearMapClass
lie_self
lt_of_lt_of_le
Nat.cast_lt
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
lt_of_le_of_lt
engel_isBot_of_isMin.lieCharpoly_coeff_natDegree
zero_add
zero_smul
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
LieSubmodule.Quotient.surjective_mk'
LieSubmodule.Quotient.mk_eq_zero'
pow_succ
LE.le.trans
Multiset.toFinset_card_le
Polynomial.card_roots'
Submodule.finrank_quotient_add_finrank
IsDomain.hasRankNullity
Cardinal.exists_finset_le_card
le_trans
Finset.le_card_sdiff
Polynomial.eq_zero_of_natDegree_lt_card_of_eval_eq_zero'
LinearMap.charpoly_eq_X_pow_iff
LieSubmodule.Quotient.mk_eq_zero
LieSubalgebra.mem_engel_iff
LieModuleHom.instLinearMapClass
pow_zero
pow_succ'
Module.End.mul_apply
Nat.find_spec
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Nat.find_min
LE.le.ge
LieSubmodule.coe_toEnd_pow
Polynomial.coeff_X_pow
LT.lt.ne
LT.lt.le
engel_isBot_of_isMin.lieCharpoly_natDegree
Polynomial.Monic.eq_X_pow_iff_natDegree_le_natTrailingDegree
engel_isBot_of_isMin.lieCharpoly_monic
Polynomial.le_natTrailingDegree
Polynomial.Monic.ne_zero
Polynomial.nontrivial
LinearMap.charpoly.congr_simp
sub_add_cancel
one_smul
Polynomial.map_X
Polynomial.map_pow
exists_isCartanSubalgebra_engel πŸ“–mathematicalβ€”LieSubalgebra.IsCartanSubalgebra
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LieSubalgebra.engel
β€”exists_isCartanSubalgebra_engel_of_finrank_le_card
LE.le.trans
Cardinal.natCast_le_aleph0
Cardinal.infinite_iff
exists_isCartanSubalgebra_engel_of_finrank_le_card πŸ“–mathematicalβ€”LieSubalgebra.IsCartanSubalgebra
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LieSubalgebra.engel
β€”Module.Free.of_divisionRing
exists_isRegular_of_finrank_le_card
instIsDomain
LieSubalgebra.isNilpotent_of_forall_le_engel
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
LieSubalgebra.self_mem_engel
engel_isBot_of_isMin
le_rfl
IsScalarTower.left
isRegular_iff_finrank_engel_eq_rank
rank_le_finrank_engel
LieSubalgebra.toSubmodule_injective
Submodule.eq_of_le_of_finrank_le
FiniteDimensional.finiteDimensional_submodule
Eq.ge
LieSubalgebra.normalizer_engel

LieAlgebra.engel_isBot_of_isMin

Theorems

NameKindAssumesProvesValidatesDepends On
lieCharpoly_coeff_natDegree πŸ“–mathematicalModule.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Polynomial.natDegree
Polynomial.coeff
Polynomial
Polynomial.semiring
β€”mul_one
Polynomial.coeff_map
MvPolynomial.aeval_natDegree_le
MvPolynomial.IsHomogeneous.totalDegree_le
smulCommClass_self
IsScalarTower.left
LinearMap.polyCharpoly_coeff_isHomogeneous
Polynomial.natDegree_add_le_of_degree_le
LE.le.trans
Polynomial.natDegree_C_mul_le
Polynomial.natDegree_X
Polynomial.natDegree_C
Nat.instCanonicallyOrderedAdd
lieCharpoly_map_eval πŸ“–mathematicalβ€”Polynomial.map
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.evalRingHom
LinearMap.charpoly
DFunLike.coe
LieHom
Module.End
AddCommGroup.toAddCommMonoid
LieRing.ofAssociativeRing
Module.End.instRing
LieAlgebra.ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieModule.toEnd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LieRing.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
LieAlgebra.toModule
β€”smulCommClass_self
IsScalarTower.left
Polynomial.map_map
RingHomInvPair.ids
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_comm
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHomClass.toRingHom.congr_simp
MvPolynomial.comp_aeval
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
LinearMap.charpoly.congr_simp
LieHom.instLinearMapClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Polynomial.aeval_C
Polynomial.aeval_X
LinearMap.polyCharpoly_map_eq_charpoly
lieCharpoly_monic πŸ“–mathematicalβ€”Polynomial.Monic
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
β€”Polynomial.Monic.map
LinearMap.polyCharpoly_monic
lieCharpoly_natDegree πŸ“–mathematicalβ€”Polynomial.natDegree
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Module.finrank
AddCommGroup.toAddCommMonoid
β€”Polynomial.Monic.natDegree_map
Polynomial.nontrivial
LinearMap.polyCharpoly_monic
LinearMap.polyCharpoly_natDegree

---

← Back to Index