Documentation Verification Report

Killing

πŸ“ Source: Mathlib/Algebra/Lie/Killing.lean

Statistics

MetricCount
DefinitionsIsKilling
1
Theoremsideal_eq_bot_of_isLieAbelian, instHasTrivialRadical, instSemisimple, ker_killingForm_eq_bot, killingCompl_top_eq_bot, killingForm_nondegenerate, isKilling_of_equiv, killingForm_of_equiv_apply, isKilling, isCompl_killingCompl
10
Total11

LieAlgebra

Definitions

NameCategoryTheorems
IsKilling πŸ“–CompData
3 mathmath: LieDerivation.IsKilling.instIsKilling_range_ad, isKilling_of_equiv, LieEquiv.isKilling

Theorems

NameKindAssumesProvesValidatesDepends On
isKilling_of_equiv πŸ“–mathematicalβ€”IsKillingβ€”LieSubmodule.ext
lieAlgebraSelfModule
LieModule.traceForm_comm
LinearMap.ext
killingForm_of_equiv_apply
LieEquiv.apply_symm_apply
RingHomInvPair.ids
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearEquiv.congr_arg
IsKilling.ker_killingForm_eq_bot
LinearMap.map_zeroβ‚‚
killingForm_of_equiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
killingForm
LieEquiv
EquivLike.toFunLike
LieEquiv.instEquivLike
β€”smulCommClass_self
RingHomCompTriple.ids
IsScalarTower.left
killingForm_apply_apply
RingHomInvPair.ids
LinearMap.comp.congr_simp
LinearMap.trace_conj'

LieAlgebra.IsKilling

Theorems

NameKindAssumesProvesValidatesDepends On
ideal_eq_bot_of_isLieAbelian πŸ“–mathematicalβ€”Bot.bot
LieIdeal
LieSubmodule.instBot
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
eq_bot_iff
killingCompl_top_eq_bot
LieIdeal.le_killingCompl_top_of_isLieAbelian
instHasTrivialRadical πŸ“–mathematicalβ€”LieAlgebra.HasTrivialRadicalβ€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals
ideal_eq_bot_of_isLieAbelian
instSemisimple πŸ“–mathematicalβ€”LieAlgebra.IsSemisimple
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”LieAlgebra.InvariantForm.isSemisimple_of_nondegenerate
killingForm_nondegenerate
LieModule.traceForm_lieInvariant
lieAlgebraSelfModule
LinearMap.IsSymm.isRefl
LieModule.traceForm_isSymm
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
ideal_eq_bot_of_isLieAbelian
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
ker_killingForm_eq_bot πŸ“–mathematicalβ€”LinearMap.ker
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LieAlgebra.toModule
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
killingForm
Bot.bot
Submodule
Submodule.instBot
β€”killingCompl_top_eq_bot
killingCompl_top_eq_bot πŸ“–mathematicalβ€”LieIdeal.killingCompl
Top.top
LieIdeal
LieSubmodule.instTop
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
Bot.bot
LieSubmodule.instBot
β€”β€”
killingForm_nondegenerate πŸ“–mathematicalβ€”LinearMap.BilinForm.Nondegenerate
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
killingForm
β€”lieAlgebraSelfModule
LinearMap.IsRefl.nondegenerate_iff_separatingLeft
LinearMap.IsSymm.isRefl
LieModule.traceForm_isSymm
smulCommClass_self
ker_killingForm_eq_bot

LieEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isKilling πŸ“–mathematicalβ€”LieAlgebra.IsKillingβ€”LieAlgebra.isKilling_of_equiv

LieIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
isCompl_killingCompl πŸ“–mathematicalβ€”IsCompl
LieIdeal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LieSubmodule.instPartialOrder
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
CompleteLattice.toBoundedOrder
LieSubmodule.instCompleteLattice
killingCompl
β€”LieAlgebra.IsKilling.instSemisimple
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
lieAlgebraSelfModule
LieModule.traceForm_apply_lie_apply
LieModule.traceForm_comm
mem_killingCompl
lie_mem_left
LieSubmodule.lie_abelian_iff_lie_self_eq_bot
LieSubmodule.lie_eq_bot_iff
LieAlgebra.IsKilling.killingForm_nondegenerate
disjoint_iff
LieAlgebra.IsKilling.ideal_eq_bot_of_isLieAbelian
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
LieSubmodule.isCompl_toSubmodule
toSubmodule_killingCompl
LinearMap.BilinForm.isCompl_orthogonal_iff_disjoint
LinearMap.IsSymm.isRefl
LieModule.traceForm_isSymm
LieSubmodule.disjoint_toSubmodule

---

← Back to Index