Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Lie/Semisimple/Basic.lean

Statistics

MetricCount
DefinitionsinstBooleanAlgebra, instDistribLattice
2
Theoremseq_bot_of_isSolvable, booleanGenerators, instHasTrivialRadical, isSimple_of_isAtom, eq_top_of_isAtom, instHasTrivialRadical, instIsIrreducible, instIsSemisimple, isAtom_iff_eq_top, isAtom_top, abelian_radical_iff_solvable_is_abelian, abelian_radical_of_hasTrivialRadical, ad_ker_eq_bot_of_hasTrivialRadical, hasTrivialRadical_iff_no_abelian_ideals, hasTrivialRadical_iff_no_solvable_ideals, hasTrivialRadical_of_no_solvable_ideals, instIsFaithfulOfHasTrivialRadical, subsingleton_of_hasTrivialRadical_lie_abelian, nontrivial_of_isIrreducible
19
Total21

LieAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
abelian_radical_iff_solvable_is_abelian πŸ“–mathematicalβ€”IsLieAbelian
LieSubmodule
LieRing.toAddCommGroup
toModule
lieRingSelfModule
SetLike.instMembership
LieSubmodule.instSetLike
radical
LieRingModule.toBracket
LieIdeal.lieRing
LieIdeal.lieRingModule
LieSubmodule.instLieRingModuleSubtypeMem
ZeroMemClass.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
Function.Injective.isLieAbelian
LieIdeal.solvable_iff_le_radical
LieIdeal.inclusion_injective
radicalIsSolvable
abelian_radical_of_hasTrivialRadical πŸ“–mathematicalβ€”IsLieAbelian
LieSubmodule
LieRing.toAddCommGroup
toModule
lieRingSelfModule
SetLike.instMembership
LieSubmodule.instSetLike
radical
LieRingModule.toBracket
LieIdeal.lieRing
LieIdeal.lieRingModule
LieSubmodule.instLieRingModuleSubtypeMem
ZeroMemClass.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
HasTrivialRadical.radical_eq_bot
LieIdeal.isLieAbelian_of_trivial
LieModule.instIsTrivialOfSubsingleton'
Unique.instSubsingleton
ad_ker_eq_bot_of_hasTrivialRadical πŸ“–mathematicalβ€”LieHom.ker
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
toModule
LieRing.ofAssociativeRing
Module.End.instRing
ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ad
Bot.bot
LieIdeal
LieSubmodule.instBot
lieRingSelfModule
β€”smulCommClass_self
IsScalarTower.left
LieModule.ker_eq_bot
lieAlgebraSelfModule
instIsFaithfulOfHasTrivialRadical
hasTrivialRadical_iff_no_abelian_ideals πŸ“–mathematicalβ€”HasTrivialRadical
Bot.bot
LieIdeal
LieSubmodule.instBot
LieRing.toAddCommGroup
toModule
lieRingSelfModule
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
hasTrivialRadical_iff_no_solvable_ideals
ofAbelianIsSolvable
abelian_of_solvable_ideal_eq_bot_iff
abelian_derivedAbelianOfIdeal
hasTrivialRadical_iff_no_solvable_ideals πŸ“–mathematicalβ€”HasTrivialRadical
Bot.bot
LieIdeal
LieSubmodule.instBot
LieRing.toAddCommGroup
toModule
lieRingSelfModule
β€”HasTrivialRadical.eq_bot_of_isSolvable
hasTrivialRadical_of_no_solvable_ideals
hasTrivialRadical_of_no_solvable_ideals πŸ“–mathematicalBot.bot
LieIdeal
LieSubmodule.instBot
LieRing.toAddCommGroup
toModule
lieRingSelfModule
HasTrivialRadicalβ€”sSup_eq_bot
instIsFaithfulOfHasTrivialRadical πŸ“–mathematicalβ€”LieModule.IsFaithful
LieRing.toAddCommGroup
toModule
lieRingSelfModule
lieAlgebraSelfModule
β€”lieAlgebraSelfModule
isFaithful_self_iff
HasTrivialRadical.eq_bot_of_isSolvable
ofAbelianIsSolvable
instIsLieAbelianSubtypeMemLieSubmoduleCenter
subsingleton_of_hasTrivialRadical_lie_abelian πŸ“–β€”β€”β€”β€”LieSubmodule.subsingleton_iff
subsingleton_of_bot_eq_top
center_eq_bot
instIsFaithfulOfHasTrivialRadical
isLieAbelian_iff_center_eq_top

LieAlgebra.HasTrivialRadical

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_isSolvable πŸ“–mathematicalβ€”Bot.bot
LieIdeal
LieSubmodule.instBot
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
β€”sSup_eq_bot
radical_eq_bot

LieAlgebra.IsSemisimple

Definitions

NameCategoryTheorems
instBooleanAlgebra πŸ“–CompOpβ€”
instDistribLattice πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
booleanGenerators πŸ“–mathematicalβ€”IsCompactlyGenerated.BooleanGenerators
LieIdeal
LieSubmodule.instCompleteLattice
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
setOf
IsAtom
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
β€”β€”
instHasTrivialRadical πŸ“–mathematicalβ€”LieAlgebra.HasTrivialRadicalβ€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals
IsAtomic.eq_bot_or_exists_atom_le
isAtomic_of_complementedLattice
LieSubmodule.instIsModularLattice
LieSubmodule.instIsCompactlyGenerated
BooleanAlgebra.toComplementedLattice
non_abelian_of_isAtom
LieIdeal.coe_bracket_of_module
trivial_lie_zero
isSimple_of_isAtom πŸ“–mathematicalIsAtom
LieIdeal
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
LieSubmodule.instCompleteLattice
LieAlgebra.IsSimple
LieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
LieIdeal.lieRing
LieIdeal.lieAlgebra
β€”RingHomSurjective.ids
sSup_singleton
sSup_union
Set.union_diff_self
Set.union_eq_self_of_subset_left
sSup_atoms_eq_top
LieSubmodule.mem_top
LieSubmodule.mem_sup
add_lie
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
Submodule.coe_subtype
lie_mem_right
LieSubmodule.mem_bot
Disjoint.eq_bot
sSupIndep_isAtom
lie_mem_left
AddSubmonoidClass.toZeroMemClass
lt_iff_le_and_ne
Mathlib.Tactic.Contrapose.contraposeβ‚„
eq_top_iff
eq_bot_iff
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
non_abelian_of_isAtom

LieAlgebra.IsSimple

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_of_isAtom πŸ“–mathematicalIsAtom
LieIdeal
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
LieSubmodule.instCompleteLattice
Top.top
LieSubmodule.instTop
β€”isAtom_iff_eq_top
instIsIrreducible
instHasTrivialRadical πŸ“–mathematicalβ€”LieAlgebra.HasTrivialRadicalβ€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals
eq_bot_or_eq_top
non_abelian
lie_abelian_iff_equiv_lie_abelian
instIsIrreducible πŸ“–mathematicalβ€”LieModule.IsIrreducible
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
β€”LieSubmodule.nontrivial_iff
not_subsingleton_iff_nontrivial
non_abelian
Mathlib.Tactic.Contrapose.contraposeβ‚„
LieModule.instIsTrivialOfSubsingleton'
eq_bot_or_eq_top
instIsSemisimple πŸ“–mathematicalβ€”LieAlgebra.IsSemisimpleβ€”instIsIrreducible
sSup_singleton
sSupIndep_singleton
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
LieSubmodule.instAddSubgroupClass
non_abelian
lie_abelian_iff_equiv_lie_abelian
isAtom_iff_eq_top
isAtom_iff_eq_top πŸ“–mathematicalβ€”IsAtom
LieIdeal
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
LieSubmodule.instCompleteLattice
Top.top
LieSubmodule.instTop
β€”isAtom_iff_eq_top
instIsIrreducible
isAtom_top πŸ“–mathematicalβ€”IsAtom
LieIdeal
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingSelfModule
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
LieSubmodule.instCompleteLattice
Top.top
LieSubmodule.instTop
β€”isAtom_top
instIsIrreducible

LieModule

Theorems

NameKindAssumesProvesValidatesDepends On
nontrivial_of_isIrreducible πŸ“–mathematicalβ€”Nontrivialβ€”bot_ne_top
IsSimpleOrder.toNontrivial
Mathlib.Tactic.Contrapose.contraposeβ‚‚
LieSubmodule.ext

---

← Back to Index