Documentation Verification Report

Sl2

πŸ“ Source: Mathlib/Algebra/Lie/Sl2.lean

Statistics

MetricCount
DefinitionsIsSl2Triple, HasPrimitiveVectorWith, toLieSubalgebra
3
Theoremsexists_nat, lie_e, lie_e_pow_succ_toEnd_f, lie_f_pow_toEnd_f, lie_h, lie_h_pow_toEnd_f, mk', ne_zero, pow_toEnd_f_eq_zero_of_eq_nat, pow_toEnd_f_ne_zero_of_eq_nat, e_ne_zero, f_ne_zero, h_ne_zero, lie_e_f, lie_h_e_nsmul, lie_h_e_smul, lie_h_f_nsmul, lie_lie_smul_f, mem_toLieSubalgebra_iff, symm_iff
20
Total23

IsSl2Triple

Definitions

NameCategoryTheorems
HasPrimitiveVectorWith πŸ“–CompData
1 mathmath: HasPrimitiveVectorWith.mk'
toLieSubalgebra πŸ“–CompOp
1 mathmath: mem_toLieSubalgebra_iff

Theorems

NameKindAssumesProvesValidatesDepends On
e_ne_zero πŸ“–β€”IsSl2Tripleβ€”β€”h_ne_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
zero_lie
lie_e_f
f_ne_zero πŸ“–β€”IsSl2Tripleβ€”β€”h_ne_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
lie_zero
lie_e_f
h_ne_zero πŸ“–β€”IsSl2Tripleβ€”β€”β€”
lie_e_f πŸ“–mathematicalIsSl2TripleBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
β€”β€”
lie_h_e_nsmul πŸ“–mathematicalIsSl2TripleBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
lie_h_e_smul πŸ“–mathematicalIsSl2TripleBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lie_h_e_nsmul
two_smul
lie_h_f_nsmul πŸ“–mathematicalIsSl2TripleBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
lie_lie_smul_f πŸ“–mathematicalIsSl2TripleBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lie_h_f_nsmul
two_smul
neg_add_rev
mem_toLieSubalgebra_iff πŸ“–mathematicalIsSl2TripleLieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
toLieSubalgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”lie_e_f
symm_iff πŸ“–mathematicalβ€”IsSl2Triple
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”symm
neg_neg

IsSl2Triple.HasPrimitiveVectorWith

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nat πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”smulCommClass_self
IsScalarTower.left
Nat.instAtLeastTwoHAddOfNat
Set.infinite_range_iff
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instInfiniteNat
LinearIndependent.finite
commRing_strongRankCondition
instNontrivialOfCharZero
Module.IsNoetherian.finite
Module.End.eigenvectors_linearIndependent
lie_h_pow_toEnd_f
Nat.exists_not_and_succ_of_not_zero_of_exists
ne_zero
lie_e_pow_succ_toEnd_f
sub_eq_zero
mul_eq_zero
IsDomain.to_noZeroDivisors
smul_eq_zero_iff_left
lie_zero
Nat.cast_add_one_ne_zero
lie_e πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
Bracket.bracket
LieRingModule.toBracket
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
lie_e_pow_succ_toEnd_f πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
Bracket.bracket
LieRingModule.toBracket
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
LieHom
LieRing.ofAssociativeRing
Module.End.instRing
LieAlgebra.ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieModule.toEnd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
β€”smulCommClass_self
IsScalarTower.left
zero_add
pow_one
leibniz_lie
instIsLieTower
IsSl2Triple.lie_e_f
lie_h
lie_e
lie_zero
add_zero
Nat.cast_zero
sub_zero
one_mul
pow_zero
pow_succ'
Module.End.mul_apply
LieModule.toEnd_apply_apply
Nat.instAtLeastTwoHAddOfNat
lie_h_pow_toEnd_f
lie_smul
lie_f_pow_toEnd_f
add_smul
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
lie_f_pow_toEnd_f πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
Bracket.bracket
LieRingModule.toBracket
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
LieHom
LieRing.ofAssociativeRing
Module.End.instRing
LieAlgebra.ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieModule.toEnd
β€”smulCommClass_self
IsScalarTower.left
pow_succ'
lie_h πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”
lie_h_pow_toEnd_f πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
Bracket.bracket
LieRingModule.toBracket
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
LieHom
LieRing.ofAssociativeRing
Module.End.instRing
LieAlgebra.ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieModule.toEnd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”smulCommClass_self
IsScalarTower.left
Nat.instAtLeastTwoHAddOfNat
pow_zero
Nat.cast_zero
MulZeroClass.mul_zero
sub_zero
lie_h
pow_succ'
Module.End.mul_apply
LieModule.toEnd_apply_apply
Nat.cast_add
Nat.cast_one
leibniz_lie
instIsLieTower
IsSl2Triple.lie_lie_smul_f
neg_smul
lie_smul
smul_lie
add_smul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
mk' πŸ“–mathematicalIsSl2Triple
Bracket.bracket
LieRingModule.toBracket
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsSl2Triple.HasPrimitiveVectorWithβ€”nsmul_lie
IsSl2Triple.lie_h_e_nsmul
lie_lie
lie_smul
smul_smul
mul_comm
sub_self
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
ne_zero πŸ“–β€”IsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
β€”β€”β€”
pow_toEnd_f_eq_zero_of_eq_nat πŸ“–mathematicalIsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
LieHom
LieRing.ofAssociativeRing
Module.End.instRing
LieAlgebra.ofAssociativeAlgebra
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieModule.toEnd
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”smulCommClass_self
IsScalarTower.left
Nat.instAtLeastTwoHAddOfNat
lie_h_pow_toEnd_f
Nat.cast_add
Nat.cast_one
lie_e_pow_succ_toEnd_f
sub_self
MulZeroClass.mul_zero
zero_smul
exists_nat
LT.lt.ne
Int.cast_injective
Int.cast_natCast
Int.cast_add
Int.cast_mul
Int.cast_ofNat
Int.cast_one
pow_toEnd_f_ne_zero_of_eq_nat πŸ“–β€”IsSl2Triple
IsSl2Triple.HasPrimitiveVectorWith
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”smulCommClass_self
IsScalarTower.left
ne_zero
pow_zero
Int.cast_smul_eq_zsmul
Int.cast_mul
Int.cast_add
Int.cast_natCast
Int.cast_one
Int.cast_sub
IsDomain.toIsCancelMulZero
IsDomain.to_noZeroDivisors
lie_e_pow_succ_toEnd_f
lie_zero
LE.le.not_gt
LE.le.trans_eq
Unique.instSubsingleton
Nat.cast_eq_zero
Int.instCharZero
Nat.cast_add
Nat.cast_one
sub_eq_zero
mul_eq_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.cast_eq_zero
smul_eq_zero
LE.le.trans

(root)

Definitions

NameCategoryTheorems
IsSl2Triple πŸ“–CompData
3 mathmath: RootPairing.GeckConstruction.isSl2Triple, IsSl2Triple.symm_iff, LieAlgebra.IsKilling.exists_isSl2Triple_of_weight_isNonZero

---

← Back to Index