Documentation Verification Report

Subalgebra

πŸ“ Source: Mathlib/Algebra/Lie/Subalgebra.lean

Statistics

MetricCount
DefinitionslieSubalgebraMap, ofEq, ofInjective, ofSubalgebras, equivRangeOfInjective, range, rangeRestrict, restrictLie, LieSubalgebra, addCommMonoid, comap, completeLattice, equivOfLe, gi, incl, incl', inclusion, instAdd, instBot, instBracketSubtypeMem, instInfSet, instMin, instModuleSubtypeMemOfIsScalarTower, instPartialOrder, instPartialOrder_1, instSetLike, instTop, instZero, lieAlgebra, lieRing, lieRingModule, lieSpan, map, ofLe, toSubmodule, instCoeLieSubalgebraSubmodule, instInhabitedLieSubalgebra, instZeroLieSubalgebra
38
TheoremslieSubalgebraMap_apply, ofEq_apply, ofInjective_apply, ofSubalgebras_apply, ofSubalgebras_symm_apply, coe_range, equivRangeOfInjective_apply, mem_range, mem_range_self, rangeRestrict_apply, range_coe, range_eq_map, surjective_rangeRestrict, coe_restrictLie, add_eq_sup, add_mem, bot_coe, bot_toSubmodule, coe_bracket, coe_bracket_of_module, coe_incl, coe_incl', coe_inclusion, coe_inf, coe_injective, coe_lieSpan_eq_span_of_forall_lie_eq_zero, coe_lieSpan_submodule_eq_iff, coe_ofLe, coe_sInf, coe_set_eq, coe_toSubmodule, coe_zero_iff_zero, eq_bot_iff, equivOfLe_apply, ext, ext_iff, ext_iff', gc_map_comap, incl_range, inclusion_apply, inclusion_injective, inf_coe, inf_toSubmodule, instAddSubgroupClass, instCanonicallyOrderedAdd, instIsArtinianSubtypeMem, instIsCentralScalarSubtypeMem, instIsLieTowerSubtypeMem, instIsNoetherianSubtypeMem, instIsOrderedAddMonoid, instIsScalarTowerSubtypeMem, instSMulMemClass, le_def, lieModule, lieSpan_eq, lieSpan_induction, lieSpan_le, lieSpan_mono, lie_mem, lie_mem', map_le_iff_le_comap, mem_bot, mem_carrier, mem_coe, mem_comap, mem_inf, mem_lieSpan, mem_map, mem_map_submodule, mem_mk_iff, mem_mk_iff', mem_ofLe, mem_toSubmodule, mem_top, mk_coe, ofLe_eq_comap_incl, sInf_coe, sInf_glb, sInf_toSubmodule, smul_mem, span_empty, span_iUnion, span_union, span_univ, sub_mem, submodule_span_le_lieSpan, subset_lieSpan, subsingleton_bot, subsingleton_of_bot, toSubmodule_eq_bot, toSubmodule_eq_top, toSubmodule_inj, toSubmodule_injective, toSubmodule_le_toSubmodule, toSubmodule_mk, top_coe, top_toSubmodule, wellFoundedGT_of_noetherian, zero_mem, exists_lieSubalgebra_coe_eq_iff
100
Total138

LieEquiv

Definitions

NameCategoryTheorems
lieSubalgebraMap πŸ“–CompOp
1 mathmath: lieSubalgebraMap_apply
ofEq πŸ“–CompOp
1 mathmath: ofEq_apply
ofInjective πŸ“–CompOp
1 mathmath: ofInjective_apply
ofSubalgebras πŸ“–CompOp
2 mathmath: ofSubalgebras_apply, ofSubalgebras_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
lieSubalgebraMap_apply πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
LieSubalgebra.map
toLieHom
DFunLike.coe
LieEquiv
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
instEquivLike
lieSubalgebraMap
β€”β€”
ofEq_apply πŸ“–mathematicalSetLike.coe
LieSubalgebra
LieSubalgebra.instSetLike
SetLike.instMembership
DFunLike.coe
LieEquiv
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
instEquivLike
ofEq
β€”β€”
ofInjective_apply πŸ“–mathematicalDFunLike.coe
LieHom
LieHom.instFunLike
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
LieHom.range
LieEquiv
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
instEquivLike
ofInjective
β€”β€”
ofSubalgebras_apply πŸ“–mathematicalLieSubalgebra.map
toLieHom
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
DFunLike.coe
LieEquiv
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
instEquivLike
ofSubalgebras
β€”β€”
ofSubalgebras_symm_apply πŸ“–mathematicalLieSubalgebra.map
toLieHom
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
DFunLike.coe
LieEquiv
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
instEquivLike
symm
ofSubalgebras
β€”β€”

LieHom

Definitions

NameCategoryTheorems
equivRangeOfInjective πŸ“–CompOp
1 mathmath: equivRangeOfInjective_apply
range πŸ“–CompOp
32 mathmath: LieDerivation.IsKilling.instIsKilling_range_ad, surjective_rangeRestrict, isIdealMorphism_def, quotKerEquivRange_toFun, LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, equivRangeOfInjective_apply, mem_range_self, LieModule.isNilpotent_range_toEnd_iff, isNilpotent_range, LieSubalgebra.incl_range, IsIdealMorphism.eq, LieDerivation.IsKilling.killingForm_restrict_range_ad, LieIdeal.incl_range, rangeRestrict_apply, coe_range, range_eq_top, range_eq_map, range_coe, quotKerEquivRange_invFun, idealRange_eq_lieSpan_range, LieDerivation.IsKilling.range_ad_eq_top, range_toSubmodule, isSolvable_range, range_subset_idealRange, LieEquiv.ofInjective_apply, LieAlgebra.IsExtension.exact, LieAlgebra.isNilpotent_range_ad_iff, LieAlgebra.IsExtension.range_eq_top, mem_range, LieModule.coe_lcs_range_toEnd_eq, LieDerivation.IsKilling.killingForm_restrict_range_ad_nondegenerate, range_eq_ker_iff
rangeRestrict πŸ“–CompOp
2 mathmath: surjective_rangeRestrict, rangeRestrict_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_range πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
LieSubalgebra.instSetLike
range
Set.range
DFunLike.coe
LieHom
instFunLike
β€”LinearMap.coe_range
RingHomSurjective.ids
equivRangeOfInjective_apply πŸ“–mathematicalDFunLike.coe
LieHom
instFunLike
LieEquiv
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
range
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
EquivLike.toFunLike
LieEquiv.instEquivLike
equivRangeOfInjective
mem_range_self
β€”β€”
mem_range πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
range
DFunLike.coe
LieHom
instFunLike
β€”LinearMap.mem_range
RingHomSurjective.ids
mem_range_self πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
range
DFunLike.coe
LieHom
instFunLike
β€”LinearMap.mem_range_self
RingHomSurjective.ids
rangeRestrict_apply πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
range
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
instFunLike
rangeRestrict
mem_range_self
β€”β€”
range_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
LieSubalgebra.instSetLike
range
Set.range
DFunLike.coe
LieHom
instFunLike
β€”coe_range
range_eq_map πŸ“–mathematicalβ€”range
LieSubalgebra.map
Top.top
LieSubalgebra
LieSubalgebra.instTop
β€”LieSubalgebra.ext
surjective_rangeRestrict πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
range
DFunLike.coe
LieHom
LieSubalgebra.lieRing
LieSubalgebra.lieAlgebra
instFunLike
rangeRestrict
β€”mem_range
mem_range_self

LieModuleHom

Definitions

NameCategoryTheorems
restrictLie πŸ“–CompOp
1 mathmath: coe_restrictLie

Theorems

NameKindAssumesProvesValidatesDepends On
coe_restrictLie πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieSubalgebra
SetLike.instMembership
LieSubalgebra.instSetLike
LieSubalgebra.lieRing
LieSubalgebra.lieRingModule
instFunLike
restrictLie
β€”β€”

LieSubalgebra

Definitions

NameCategoryTheorems
addCommMonoid πŸ“–CompOp
1 mathmath: instIsOrderedAddMonoid
comap πŸ“–CompOp
4 mathmath: map_le_iff_le_comap, mem_comap, ofLe_eq_comap_incl, gc_map_comap
completeLattice πŸ“–CompOp
3 mathmath: span_union, span_iUnion, add_eq_sup
equivOfLe πŸ“–CompOp
1 mathmath: equivOfLe_apply
gi πŸ“–CompOpβ€”
incl πŸ“–CompOp
5 mathmath: incl_range, LieModule.coe_genWeightSpace_of_top, coe_incl, ofLe_eq_comap_incl, ad_comp_incl_eq
incl' πŸ“–CompOp
2 mathmath: coe_incl', LieAlgebra.rootSpace_comap_eq_genWeightSpace
inclusion πŸ“–CompOp
4 mathmath: inclusion_apply, equivOfLe_apply, coe_inclusion, inclusion_injective
instAdd πŸ“–CompOp
2 mathmath: instCanonicallyOrderedAdd, add_eq_sup
instBot πŸ“–CompOp
8 mathmath: subsingleton_bot, bot_coe, mem_bot, subsingleton_of_bot, span_empty, toSubmodule_eq_bot, bot_toSubmodule, eq_bot_iff
instBracketSubtypeMem πŸ“–CompOp
5 mathmath: LieAlgebra.IsKilling.chainLength_nsmul, coe_bracket_of_module, instIsLieTowerSubtypeMem, LieAlgebra.IsKilling.lie_eq_smul_of_mem_rootSpace, LieAlgebra.IsKilling.chainLength_smul
instInfSet πŸ“–CompOp
4 mathmath: sInf_coe, sInf_toSubmodule, coe_sInf, sInf_glb
instMin πŸ“–CompOp
4 mathmath: inf_coe, mem_inf, coe_inf, inf_toSubmodule
instModuleSubtypeMemOfIsScalarTower πŸ“–CompOp
33 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieAlgebra.finrank_engel, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, RootPairing.GeckConstruction.span_range_h'_eq_top, coe_incl', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg_aux, LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieAlgebra.SpecialLinear.val_single, instIsNoetherianSubtypeMem, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, LieAlgebra.rank_le_finrank_engel, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieAlgebra.IsKilling.rootSystem_pairing_apply, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieAlgebra.mem_corootSpace', LieAlgebra.IsKilling.traceForm_coroot, LieAlgebra.isRegular_iff_finrank_engel_eq_rank, instIsScalarTowerSubtypeMem, LieAlgebra.SpecialLinear.val_singleSubSingle, instIsCentralScalarSubtypeMem, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', LieAlgebra.IsKilling.rootSystem_root_apply, instIsArtinianSubtypeMem, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple
instPartialOrder πŸ“–CompOpβ€”
instPartialOrder_1 πŸ“–CompOp
13 mathmath: le_normalizer, toSubmodule_le_toSubmodule, lieSpan_mono, map_le_iff_le_comap, instCanonicallyOrderedAdd, RootPairing.GeckConstruction.cartanSubalgebra_le_lieAlgebra, lieSpan_le, instIsOrderedAddMonoid, wellFoundedGT_of_noetherian, le_def, sInf_glb, LieAlgebra.le_zeroRootSubalgebra, gc_map_comap
instSetLike πŸ“–CompOp
201 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieDerivation.IsKilling.instIsKilling_range_ad, inclusion_apply, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, isLieAbelian_lieSpan_iff, skewAdjointMatricesLieSubalgebraEquivTranspose_apply, RootPairing.GeckConstruction.instHasTrivialRadical, LieAlgebra.Orthogonal.mem_so, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, RootPairing.GeckConstruction.h_mem_cartanSubalgebra, LieHom.surjective_rangeRestrict, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieAlgebra.finrank_engel, skewAdjointLieSubalgebraEquiv_apply, mem_map_submodule, equivOfLe_apply, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, toEnd_eq, LieAlgebra.coe_zeroRootSubalgebra, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, subsingleton_bot, LieModule.isNilpotent_of_top_iff, bot_coe, mem_ofLe, skewAdjointLieSubalgebraEquiv_symm_apply, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, mem_bot, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, LieHom.equivRangeOfInjective_apply, LieHom.mem_range_self, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LieModule.isNilpotent_range_toEnd_iff, LieModule.instIsTriangularizableSubtypeMemLieSubalgebra, LieIdeal.coe_toLieSubalgebra, LieHom.isNilpotent_range, IsCartanSubalgebra.nilpotent, mem_toSubmodule, mem_carrier, engel_carrier, coe_injective, LieAlgebra.IsKilling.chainLength_zero, incl_range, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', IsSl2Triple.mem_toLieSubalgebra_iff, sInf_coe, exists_nested_lieIdeal_coe_eq_iff, LieAlgebra.instIsSolvableSubtypeMemLieSubalgebraTop, coe_bracket_of_module, inf_coe, coe_normalizer_eq_normalizer, LieModule.exists_forall_mem_corootSpace_smul_add_eq_zero, coe_toSubmodule, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, coe_ad_pow, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, subsingleton_of_bot, mem_toLieSubmodule, self_mem_engel, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieDerivation.IsKilling.killingForm_restrict_range_ad, coe_inclusion, LieAlgebra.IsKilling.chainLength_neg, RootPairing.GeckConstruction.span_range_h'_eq_top, coe_sInf, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieEquiv.ofSubalgebras_apply, coe_set_eq, LieModuleHom.coe_restrictLie, LieAlgebra.IsKilling.apply_coroot_eq_cast, coe_incl', RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieHom.rangeRestrict_apply, LieAlgebra.SpecialLinear.sl_bracket, subset_lieSpan, LieHom.coe_range, LieModule.Weight.isZero_neg, instIsNilpotentSubtypeMemLieSubalgebraTop, mem_comap, mem_inf, LieEquiv.lieSubalgebraMap_apply, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieAlgebra.rootSpace_zero_eq, LieDerivation.eqOn_lieSpan, mem_skewAdjointMatricesLieSubalgebra, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, lieModule, RootPairing.GeckConstruction.instIsIrreducible, mem_engel_iff, ucs_eq_self_of_isCartanSubalgebra, LieHom.range_coe, isNilpotent_of_forall_le_engel, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, instIsLieTowerSubtypeMem, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, coe_bracket, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieModule.coe_genWeightSpace_of_top, LieHom.quotKerEquivRange_invFun, top_coe, coe_ofLe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, inclusion_injective, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, isCartanSubalgebra_iff_isUcsLimit, LieAlgebra.rootSpace_comap_eq_genWeightSpace, ext_iff', LieAlgebra.restrict_killingForm, mem_skewAdjointMatricesLieSubalgebra_unit_smul, coe_toLieSubmodule, instIsNilpotentSubtypeMemOfIsCartanSubalgebra, LieAlgebra.IsKilling.coroot_neg, mem_normalizer_iff', LieHom.idealRange_eq_lieSpan_range, coe_inf, LieAlgebra.SpecialLinear.val_single, instIsNoetherianSubtypeMem, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, RootPairing.GeckConstruction.h_mem_lieAlgebra, exists_lieIdeal_coe_eq_iff, LieAlgebra.rank_le_finrank_engel, topEquiv_apply, instNontrivialSubtypeMemOfIsCartanSubalgebra, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieHom.isSolvable_range, normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, coe_incl, ext_iff, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, lieSpan_le, mk_coe, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieHom.range_subset_idealRange, LieEquiv.ofSubalgebras_symm_apply, coe_zero_iff_zero, LieEquiv.ofInjective_apply, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieAlgebra.mem_corootSpace', mem_map, zero_mem, LieAlgebra.isNilpotent_range_ad_iff, LieAlgebra.IsKilling.traceForm_coroot, mem_mk_iff', LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieModule.Weight.isNonZero_neg, LieModule.instIsFaithfulSubtypeMemLieSubalgebra, exists_nested_lieIdeal_ofLe_normalizer, LieHom.mem_range, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieModule.coe_lcs_range_toEnd_eq, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.isRegular_iff_finrank_engel_eq_rank, instIsScalarTowerSubtypeMem, mem_coe, LieAlgebra.mem_corootSpace, RootPairing.GeckConstruction.f_mem_lieAlgebra, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, RootPairing.GeckConstruction.e_mem_lieAlgebra, LieAlgebra.SpecialLinear.val_singleSubSingle, lieSpan_eq, LieAlgebra.IsKilling.span_weight_eq_top, skewAdjointMatricesLieSubalgebraEquiv_apply, le_def, LieModule.Weight.toLinear_neg, mem_lieSpan, mem_top, ofLe_eq_comap_incl, instSMulMemClass, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, instIsCentralScalarSubtypeMem, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, mem_normalizer_iff, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', LieAlgebra.IsKilling.rootSystem_root_apply, instIsArtinianSubtypeMem, normalizer_eq_self_of_isCartanSubalgebra, LieModule.Weight.coe_neg, mem_mk_iff, instAddSubgroupClass, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, coe_ad, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, ad_comp_incl_eq
instTop πŸ“–CompOp
20 mathmath: top_toSubmodule, span_univ, LieModule.isNilpotent_of_top_iff, LieAlgebra.instIsSolvableSubtypeMemLieSubalgebraTop, instIsNilpotentSubtypeMemLieSubalgebraTop, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieHom.range_eq_top, LieHom.range_eq_map, LieModule.coe_genWeightSpace_of_top, top_coe, engel_zero, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, topEquiv_apply, LieDerivation.IsKilling.range_ad_eq_top, toSubmodule_eq_top, LieIdeal.normalizer_eq_top, LieAlgebra.top_isCartanSubalgebra_of_nilpotent, LieIdeal.top_toLieSubalgebra, LieAlgebra.IsExtension.range_eq_top, mem_top
instZero πŸ“–CompOpβ€”
lieAlgebra πŸ“–CompOp
112 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieDerivation.IsKilling.instIsKilling_range_ad, inclusion_apply, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, skewAdjointMatricesLieSubalgebraEquivTranspose_apply, RootPairing.GeckConstruction.instHasTrivialRadical, LieHom.surjective_rangeRestrict, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, LieAlgebra.mapsTo_toEnd_genWeightSpace_add_of_mem_rootSpace, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, skewAdjointLieSubalgebraEquiv_apply, equivOfLe_apply, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, toEnd_eq, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, mem_ofLe, skewAdjointLieSubalgebraEquiv_symm_apply, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, LieHom.equivRangeOfInjective_apply, LieModule.instIsTriangularizableSubtypeMemLieSubalgebra, LieModule.traceForm_lieSubalgebra_mk_right, LieAlgebra.IsKilling.chainLength_zero, incl_range, toEnd_mk, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', exists_nested_lieIdeal_coe_eq_iff, coe_normalizer_eq_normalizer, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, coe_ad_pow, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, subsingleton_of_bot, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieDerivation.IsKilling.killingForm_restrict_range_ad, coe_inclusion, LieEquiv.ofEq_apply, LieAlgebra.IsKilling.chainLength_neg, RootPairing.GeckConstruction.span_range_h'_eq_top, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieEquiv.ofSubalgebras_apply, LieAlgebra.IsKilling.apply_coroot_eq_cast, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieHom.rangeRestrict_apply, LieModule.Weight.isZero_neg, LieEquiv.lieSubalgebraMap_apply, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, lieModule, ucs_eq_self_of_isCartanSubalgebra, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, isNilpotent_ad_of_isNilpotent_ad, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieModule.coe_genWeightSpace_of_top, LieHom.quotKerEquivRange_invFun, coe_ofLe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, inclusion_injective, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, isCartanSubalgebra_iff_isUcsLimit, RootPairing.GeckConstruction.h_mem_cartanSubalgebra', LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieModule.traceForm_lieSubalgebra_mk_left, LieAlgebra.restrict_killingForm, LieAlgebra.IsKilling.coroot_neg, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, topEquiv_apply, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, coe_incl, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieEquiv.ofSubalgebras_symm_apply, LieEquiv.ofInjective_apply, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieAlgebra.mem_corootSpace', LieAlgebra.IsKilling.traceForm_coroot, LieAlgebra.IsKilling.coroot_zero, LieModule.Weight.isNonZero_neg, LieModule.instIsFaithfulSubtypeMemLieSubalgebra, exists_nested_lieIdeal_ofLe_normalizer, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieModule.coe_lcs_range_toEnd_eq, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.mem_corootSpace, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, LieAlgebra.IsKilling.span_weight_eq_top, skewAdjointMatricesLieSubalgebraEquiv_apply, LieAlgebra.isNilpotent_ad_of_isNilpotent, LieModule.Weight.toLinear_neg, ofLe_eq_comap_incl, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, LieAlgebra.rootSpaceProduct_tmul, LieAlgebra.IsKilling.rootSystem_root_apply, normalizer_eq_self_of_isCartanSubalgebra, LieModule.Weight.coe_neg, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, coe_ad, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, ad_comp_incl_eq
lieRing πŸ“–CompOp
150 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieDerivation.IsKilling.instIsKilling_range_ad, inclusion_apply, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, isLieAbelian_lieSpan_iff, skewAdjointMatricesLieSubalgebraEquivTranspose_apply, RootPairing.GeckConstruction.instHasTrivialRadical, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, LieHom.surjective_rangeRestrict, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieAlgebra.finrank_engel, skewAdjointLieSubalgebraEquiv_apply, equivOfLe_apply, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, toEnd_eq, LieAlgebra.coe_zeroRootSubalgebra, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, LieModule.isNilpotent_of_top_iff, mem_ofLe, skewAdjointLieSubalgebraEquiv_symm_apply, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, LieHom.equivRangeOfInjective_apply, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LieModule.isNilpotent_range_toEnd_iff, LieModule.instIsTriangularizableSubtypeMemLieSubalgebra, LieHom.isNilpotent_range, IsCartanSubalgebra.nilpotent, LieModule.traceForm_lieSubalgebra_mk_right, LieAlgebra.IsKilling.chainLength_zero, incl_range, toEnd_mk, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', exists_nested_lieIdeal_coe_eq_iff, LieAlgebra.instIsSolvableSubtypeMemLieSubalgebraTop, coe_normalizer_eq_normalizer, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, coe_ad_pow, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, subsingleton_of_bot, mem_toLieSubmodule, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieDerivation.IsKilling.killingForm_restrict_range_ad, coe_inclusion, LieEquiv.ofEq_apply, LieAlgebra.IsKilling.chainLength_neg, RootPairing.GeckConstruction.span_range_h'_eq_top, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieEquiv.ofSubalgebras_apply, LieModuleHom.coe_restrictLie, LieAlgebra.IsKilling.apply_coroot_eq_cast, coe_incl', RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieHom.rangeRestrict_apply, LieAlgebra.SpecialLinear.sl_bracket, LieModule.Weight.isZero_neg, instIsNilpotentSubtypeMemLieSubalgebraTop, LieEquiv.lieSubalgebraMap_apply, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, lieModule, RootPairing.GeckConstruction.instIsIrreducible, ucs_eq_self_of_isCartanSubalgebra, isNilpotent_of_forall_le_engel, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, coe_bracket, isNilpotent_ad_of_isNilpotent_ad, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieModule.coe_genWeightSpace_of_top, LieHom.quotKerEquivRange_invFun, coe_ofLe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, inclusion_injective, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, isCartanSubalgebra_iff_isUcsLimit, RootPairing.GeckConstruction.h_mem_cartanSubalgebra', LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieModule.traceForm_lieSubalgebra_mk_left, LieAlgebra.restrict_killingForm, coe_toLieSubmodule, instIsNilpotentSubtypeMemOfIsCartanSubalgebra, LieAlgebra.IsKilling.coroot_neg, LieAlgebra.SpecialLinear.val_single, instIsNoetherianSubtypeMem, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, LieAlgebra.rank_le_finrank_engel, topEquiv_apply, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieHom.isSolvable_range, normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, coe_incl, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieEquiv.ofSubalgebras_symm_apply, LieEquiv.ofInjective_apply, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieAlgebra.mem_corootSpace', LieAlgebra.isNilpotent_range_ad_iff, LieAlgebra.IsKilling.traceForm_coroot, LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieModule.Weight.isNonZero_neg, LieModule.instIsFaithfulSubtypeMemLieSubalgebra, exists_nested_lieIdeal_ofLe_normalizer, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieModule.coe_lcs_range_toEnd_eq, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.isRegular_iff_finrank_engel_eq_rank, instIsScalarTowerSubtypeMem, LieAlgebra.mem_corootSpace, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, LieAlgebra.SpecialLinear.val_singleSubSingle, LieAlgebra.IsKilling.span_weight_eq_top, skewAdjointMatricesLieSubalgebraEquiv_apply, LieAlgebra.isNilpotent_ad_of_isNilpotent, LieModule.Weight.toLinear_neg, ofLe_eq_comap_incl, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, instIsCentralScalarSubtypeMem, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, LieAlgebra.rootSpaceProduct_tmul, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', LieAlgebra.IsKilling.rootSystem_root_apply, instIsArtinianSubtypeMem, normalizer_eq_self_of_isCartanSubalgebra, LieModule.Weight.coe_neg, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, coe_ad, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, ad_comp_incl_eq
lieRingModule πŸ“–CompOp
82 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, toEnd_eq, LieAlgebra.coe_zeroRootSubalgebra, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, LieModule.isNilpotent_of_top_iff, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, LieModule.isNilpotent_range_toEnd_iff, LieModule.instIsTriangularizableSubtypeMemLieSubalgebra, LieModule.traceForm_lieSubalgebra_mk_right, LieAlgebra.IsKilling.chainLength_zero, toEnd_mk, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', coe_normalizer_eq_normalizer, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, mem_toLieSubmodule, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieAlgebra.IsKilling.chainLength_neg, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieModuleHom.coe_restrictLie, LieAlgebra.IsKilling.apply_coroot_eq_cast, coe_incl', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieModule.Weight.isZero_neg, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, lieModule, RootPairing.GeckConstruction.instIsIrreducible, ucs_eq_self_of_isCartanSubalgebra, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieModule.coe_genWeightSpace_of_top, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, isCartanSubalgebra_iff_isUcsLimit, LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieModule.traceForm_lieSubalgebra_mk_left, LieAlgebra.restrict_killingForm, coe_toLieSubmodule, LieAlgebra.IsKilling.coroot_neg, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieAlgebra.mem_corootSpace', LieAlgebra.IsKilling.traceForm_coroot, LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieModule.Weight.isNonZero_neg, LieModule.instIsFaithfulSubtypeMemLieSubalgebra, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieModule.coe_lcs_range_toEnd_eq, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.mem_corootSpace, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, LieAlgebra.IsKilling.span_weight_eq_top, LieModule.Weight.toLinear_neg, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, LieAlgebra.rootSpaceProduct_tmul, LieAlgebra.IsKilling.rootSystem_root_apply, normalizer_eq_self_of_isCartanSubalgebra, LieModule.Weight.coe_neg, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple
lieSpan πŸ“–CompOp
15 mathmath: isLieAbelian_lieSpan_iff, submodule_span_le_lieSpan, span_univ, span_union, RootPairing.GeckConstruction.cartanSubalgebra_eq_lieSpan, lieSpan_mono, span_empty, subset_lieSpan, LieDerivation.eqOn_lieSpan, coe_lieSpan_eq_span_of_forall_lie_eq_zero, lieSpan_le, coe_lieSpan_submodule_eq_iff, span_iUnion, lieSpan_eq, mem_lieSpan
map πŸ“–CompOp
6 mathmath: mem_map_submodule, map_le_iff_le_comap, LieEquiv.lieSubalgebraMap_apply, LieHom.range_eq_map, mem_map, gc_map_comap
ofLe πŸ“–CompOp
6 mathmath: equivOfLe_apply, mem_ofLe, exists_nested_lieIdeal_coe_eq_iff, coe_ofLe, exists_nested_lieIdeal_ofLe_normalizer, ofLe_eq_comap_incl
toSubmodule πŸ“–CompOp
39 mathmath: top_toSubmodule, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, LieIdeal.restrict_killingForm, mem_map_submodule, submodule_span_le_lieSpan, LieAlgebra.coe_zeroRootSubalgebra, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, LieAlgebra.InvariantForm.restrict_nondegenerate, LieIdeal.coe_killingCompl_top, LieSubmodule.traceForm_eq_of_le_idealizer, toSubmodule_le_toSubmodule, mem_toSubmodule, mem_carrier, LieIdeal.incl_coe, coe_normalizer_eq_normalizer, coe_toSubmodule, sInf_toSubmodule, LieIdeal.toLieSubalgebra_toSubmodule, LieDerivation.IsKilling.killingForm_restrict_range_ad, toSubmodule_inj, toSubmodule_injective, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, coe_lieSpan_eq_span_of_forall_lie_eq_zero, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieAlgebra.InvariantForm.restrict_orthogonal_nondegenerate, toSubmodule_eq_bot, coe_ofLe, LieIdeal.killingForm_eq, LieAlgebra.restrict_killingForm, coe_toLieSubmodule, LieHom.range_toSubmodule, toSubmodule_eq_top, toSubmodule_mk, inf_toSubmodule, Submodule.exists_lieSubalgebra_coe_eq_iff, coe_lieSpan_submodule_eq_iff, LieAlgebra.IsKilling.ker_restrict_eq_bot_of_isCartanSubalgebra, bot_toSubmodule, LieDerivation.IsKilling.killingForm_restrict_range_ad_nondegenerate

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_sup πŸ“–mathematicalβ€”LieSubalgebra
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”β€”
add_mem πŸ“–mathematicalLieSubalgebra
SetLike.instMembership
instSetLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
bot_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
Bot.bot
instBot
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”β€”
bot_toSubmodule πŸ“–mathematicalβ€”toSubmodule
Bot.bot
LieSubalgebra
instBot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instBot
β€”β€”
coe_bracket πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
Bracket.bracket
LieRingModule.toBracket
lieRing
LieRing.toAddCommGroup
lieRingSelfModule
β€”β€”
coe_bracket_of_module πŸ“–mathematicalβ€”Bracket.bracket
LieSubalgebra
SetLike.instMembership
instSetLike
instBracketSubtypeMem
LieRingModule.toBracket
β€”β€”
coe_incl πŸ“–mathematicalβ€”DFunLike.coe
LieHom
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
LieHom.instFunLike
incl
β€”β€”
coe_incl' πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
LieRing.toAddCommGroup
instModuleSubtypeMemOfIsScalarTower
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
Algebra.id
LieAlgebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Module.toDistribMulAction
lieRingSelfModule
lieRingModule
LieModuleHom.instFunLike
incl'
β€”IsScalarTower.left
coe_inclusion πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
SetLike.instMembership
instSetLike
DFunLike.coe
LieHom
lieRing
lieAlgebra
LieHom.instFunLike
inclusion
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_injective πŸ“–mathematicalβ€”LieSubalgebra
Set
SetLike.coe
instSetLike
β€”SetLike.coe_injective
coe_lieSpan_eq_span_of_forall_lie_eq_zero πŸ“–mathematicalBracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
toSubmodule
lieSpan
Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
β€”Submodule.span_inductionβ‚‚
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
zero_lie
lie_zero
add_lie
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
lie_add
smul_lie
lieAlgebraSelfModule
Submodule.smul_mem
lie_smul
le_antisymm
lieSpan_le
Submodule.subset_span
submodule_span_le_lieSpan
coe_lieSpan_submodule_eq_iff πŸ“–mathematicalβ€”toSubmodule
lieSpan
SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.setLike
β€”Submodule.exists_lieSubalgebra_coe_eq_iff
mem_toSubmodule
lie_mem
subset_lieSpan
coe_toSubmodule
lieSpan_eq
coe_ofLe πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
toSubmodule
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
ofLe
LinearMap.range
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.inclusion
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”coe_toSubmodule
sInf_toSubmodule
Submodule.coe_sInf
Set.ext
Set.iInter_exists
Set.biInter_and'
Set.iInter_congr_Prop
Set.iInter_iInter_eq_right
coe_set_eq πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
β€”SetLike.coe_set_eq
coe_toSubmodule πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.setLike
toSubmodule
LieSubalgebra
instSetLike
β€”β€”
coe_zero_iff_zero πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
ZeroMemClass.zero
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
ext_iff
eq_bot_iff πŸ“–mathematicalβ€”Bot.bot
LieSubalgebra
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”eq_bot_iff
equivOfLe_apply πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
DFunLike.coe
LieEquiv
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
ofLe
EquivLike.toFunLike
LieEquiv.instEquivLike
equivOfLe
LieHom
LieHom.instFunLike
inclusion
LieHom.mem_range_self
β€”β€”
ext πŸ“–β€”LieSubalgebra
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
β€”β€”
ext_iff' πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
β€”SetLike.ext_iff
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
LieSubalgebra
PartialOrder.toPreorder
instPartialOrder_1
map
comap
β€”map_le_iff_le_comap
incl_range πŸ“–mathematicalβ€”LieHom.range
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
incl
β€”Submodule.range_subtype
inclusion_apply πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
DFunLike.coe
LieHom
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
LieHom.instFunLike
inclusion
β€”β€”
inclusion_injective πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
SetLike.instMembership
instSetLike
DFunLike.coe
LieHom
lieRing
lieAlgebra
LieHom.instFunLike
inclusion
β€”β€”
inf_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
instMin
Set
Set.instInter
β€”coe_inf
inf_toSubmodule πŸ“–mathematicalβ€”toSubmodule
LieSubalgebra
instMin
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instMin
β€”β€”
instAddSubgroupClass πŸ“–mathematicalβ€”AddSubgroupClass
LieSubalgebra
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
instSetLike
β€”Submodule.add_mem
AddSubmonoid.zero_mem'
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
instCanonicallyOrderedAdd πŸ“–mathematicalβ€”CanonicallyOrderedAdd
LieSubalgebra
instAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
β€”sup_eq_right
le_sup_right
le_sup_left
instIsArtinianSubtypeMem πŸ“–mathematicalβ€”IsArtinian
LieSubalgebra
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
lieRing
instModuleSubtypeMemOfIsScalarTower
Algebra.toSMul
Algebra.id
LieAlgebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”isArtinian_submodule'
instIsCentralScalarSubtypeMem πŸ“–mathematicalβ€”IsCentralScalar
LieSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
lieRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
instModuleSubtypeMemOfIsScalarTower
MulOpposite
MulOpposite.instMonoid
MulOpposite.instSemiring
β€”Submodule.isCentralScalar
instIsLieTowerSubtypeMem πŸ“–mathematicalβ€”IsLieTower
LieSubalgebra
SetLike.instMembership
instSetLike
instBracketSubtypeMem
LieRing.toAddCommGroup
lieRingSelfModule
LieRingModule.toBracket
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”leibniz_lie
instIsLieTower
instIsNoetherianSubtypeMem πŸ“–mathematicalβ€”IsNoetherian
LieSubalgebra
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
lieRing
instModuleSubtypeMemOfIsScalarTower
Algebra.toSMul
Algebra.id
LieAlgebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”isNoetherian_submodule'
instIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
LieSubalgebra
addCommMonoid
instPartialOrder_1
β€”sup_le_sup_right
instIsScalarTowerSubtypeMem πŸ“–mathematicalβ€”IsScalarTower
LieSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
lieRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
instModuleSubtypeMemOfIsScalarTower
Algebra.toSMul
Algebra.id
LieAlgebra.toModule
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
β€”Submodule.isScalarTower
instSMulMemClass πŸ“–mathematicalβ€”SMulMemClass
LieSubalgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
instSetLike
β€”SMulMemClass.smul_mem
Submodule.smulMemClass
le_def πŸ“–mathematicalβ€”LieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”β€”
lieModule πŸ“–mathematicalβ€”LieModule
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
lieRingModule
β€”coe_bracket_of_module
IsScalarTower.left
Submodule.coe_smul_of_tower
smul_lie
lie_smul
lieSpan_eq πŸ“–mathematicalβ€”lieSpan
SetLike.coe
LieSubalgebra
instSetLike
β€”le_antisymm
lieSpan_le
Eq.subset
Set.instReflSubset
subset_lieSpan
lieSpan_induction πŸ“–β€”subset_lieSpan
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
zero_mem
lieSpan
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
add_mem
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
smul_mem
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
lie_mem
LieSubalgebra
SetLike.instMembership
instSetLike
β€”β€”subset_lieSpan
zero_mem
add_mem
smul_mem
lie_mem
lieSpan_le
lieSpan_le πŸ“–mathematicalβ€”LieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
lieSpan
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_lieSpan
mem_lieSpan
lieSpan_mono πŸ“–mathematicalSet
Set.instHasSubset
LieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
lieSpan
β€”lieSpan_le
Set.Subset.trans
subset_lieSpan
lie_mem πŸ“–mathematicalLieSubalgebra
SetLike.instMembership
instSetLike
Bracket.bracket
LieRingModule.toBracket
LieRing.toAddCommGroup
lieRingSelfModule
β€”lie_mem'
lie_mem' πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
LieAlgebra.toModule
toSubmodule
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”β€”
map_le_iff_le_comap πŸ“–mathematicalβ€”LieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
map
comap
β€”Set.image_subset_iff
mem_bot πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
Bot.bot
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”Set.mem_singleton_iff
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
LieAlgebra.toModule
toSubmodule
SetLike.coe
LieSubalgebra
instSetLike
β€”β€”
mem_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SetLike.coe
LieSubalgebra
instSetLike
SetLike.instMembership
β€”β€”
mem_comap πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
comap
DFunLike.coe
LieHom
LieHom.instFunLike
β€”β€”
mem_inf πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
instMin
β€”mem_toSubmodule
inf_toSubmodule
Submodule.mem_inf
mem_lieSpan πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
lieSpan
β€”SetLike.mem_coe
lieSpan.eq_1
coe_sInf
Set.mem_iInterβ‚‚
mem_map πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
map
DFunLike.coe
LieHom
LieHom.instFunLike
β€”Submodule.mem_map
RingHomSurjective.ids
mem_map_submodule πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
map
LieEquiv.toLieHom
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LieEquiv.toLinearEquiv
toSubmodule
β€”β€”
mem_mk_iff πŸ“–mathematicalSet
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddZero.toZero
AddSubsemigroup.carrier
AddSubmonoid.toAddSubsemigroup
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
Submodule.toAddSubmonoid
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
LieSubalgebra
SetLike.instMembership
instSetLike
β€”β€”
mem_mk_iff' πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
LieAlgebra.toModule
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
LieSubalgebra
SetLike.instMembership
instSetLike
Submodule
Submodule.setLike
β€”β€”
mem_ofLe πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
ofLe
β€”β€”
mem_toSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
SetLike.instMembership
Submodule.setLike
toSubmodule
LieSubalgebra
instSetLike
β€”β€”
mem_top πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
mk_coe πŸ“–mathematicalSet
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddZero.toZero
AddSubsemigroup.carrier
AddSubmonoid.toAddSubsemigroup
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
LieAlgebra.toModule
Submodule.toAddSubmonoid
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
SetLike.coe
LieSubalgebra
instSetLike
β€”β€”
ofLe_eq_comap_incl πŸ“–mathematicalLieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
ofLe
comap
SetLike.instMembership
instSetLike
lieRing
lieAlgebra
incl
β€”ext
mem_ofLe
sInf_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”coe_sInf
sInf_glb πŸ“–mathematicalβ€”IsGLB
LieSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder_1
InfSet.sInf
instInfSet
β€”IsGLB.of_image
coe_sInf
isGLB_biInf
sInf_toSubmodule πŸ“–mathematicalβ€”toSubmodule
InfSet.sInf
LieSubalgebra
instInfSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instInfSet
setOf
Set
Set.instMembership
β€”β€”
smul_mem πŸ“–mathematicalLieSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LieAlgebra.toModule
β€”SMulMemClass.smul_mem
instSMulMemClass
span_empty πŸ“–mathematicalβ€”lieSpan
Set
Set.instEmptyCollection
Bot.bot
LieSubalgebra
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
span_iUnion πŸ“–mathematicalβ€”lieSpan
Set.iUnion
iSup
LieSubalgebra
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
span_union πŸ“–mathematicalβ€”lieSpan
Set
Set.instUnion
LieSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
span_univ πŸ“–mathematicalβ€”lieSpan
Set.univ
Top.top
LieSubalgebra
instTop
β€”eq_top_iff
SetLike.le_def
instIsConcreteLE
subset_lieSpan
sub_mem πŸ“–mathematicalLieSubalgebra
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LieRing.toAddCommGroup
β€”sub_mem
instAddSubgroupClass
submodule_span_le_lieSpan πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
toSubmodule
lieSpan
β€”Submodule.span_le
coe_toSubmodule
subset_lieSpan
subset_lieSpan πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
LieSubalgebra
instSetLike
lieSpan
β€”SetLike.mem_coe
mem_lieSpan
subsingleton_bot πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
Bot.bot
instBot
β€”β€”
subsingleton_of_bot πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
Bot.bot
instBot
lieRing
lieAlgebra
β€”subsingleton_of_bot_eq_top
ext
mem_bot
toSubmodule_eq_bot πŸ“–mathematicalβ€”toSubmodule
Bot.bot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instBot
LieSubalgebra
instBot
β€”β€”
toSubmodule_eq_top πŸ“–mathematicalβ€”toSubmodule
Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instTop
LieSubalgebra
instTop
β€”β€”
toSubmodule_inj πŸ“–mathematicalβ€”toSubmoduleβ€”toSubmodule_injective
toSubmodule_injective πŸ“–mathematicalβ€”LieSubalgebra
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
toSubmodule
β€”coe_set_eq
SetLike.ext'_iff
toSubmodule_le_toSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
toSubmodule
LieSubalgebra
instPartialOrder_1
β€”β€”
toSubmodule_mk πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
LieAlgebra.toModule
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
toSubmoduleβ€”β€”
top_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubalgebra
instSetLike
Top.top
instTop
Set.univ
β€”β€”
top_toSubmodule πŸ“–mathematicalβ€”toSubmodule
Top.top
LieSubalgebra
instTop
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
Submodule.instTop
β€”β€”
wellFoundedGT_of_noetherian πŸ“–mathematicalβ€”WellFoundedGT
LieSubalgebra
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder_1
β€”RelHomClass.isWellFounded
RelHom.instRelHomClass
wellFoundedGT
zero_mem πŸ“–mathematicalβ€”LieSubalgebra
SetLike.instMembership
instSetLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lieSubalgebra_coe_eq_iff πŸ“–mathematicalβ€”LieSubalgebra.toSubmodule
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieAlgebra.toModule
SetLike.instMembership
setLike
Bracket.bracket
LieRingModule.toBracket
lieRingSelfModule
β€”LieSubalgebra.lie_mem'

(root)

Definitions

NameCategoryTheorems
LieSubalgebra πŸ“–CompData
223 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LieAlgebra.IsKilling.iInf_ker_weight_eq_bot, LieSubalgebra.top_toSubmodule, LieDerivation.IsKilling.instIsKilling_range_ad, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, LieSubalgebra.isLieAbelian_lieSpan_iff, skewAdjointMatricesLieSubalgebraEquivTranspose_apply, RootPairing.GeckConstruction.instHasTrivialRadical, LieAlgebra.Orthogonal.mem_so, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, RootPairing.GeckConstruction.h_mem_cartanSubalgebra, LieHom.surjective_rangeRestrict, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot, LieSubalgebra.le_normalizer, LieAlgebra.finrank_engel, skewAdjointLieSubalgebraEquiv_apply, LieSubalgebra.mem_map_submodule, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieAlgebra.IsKilling.rootSystem_coroot_apply, LieAlgebra.IsKilling.traceForm_cartan_nondegenerate, LieSubalgebra.toEnd_eq, LieAlgebra.coe_zeroRootSubalgebra, LieSubalgebra.span_univ, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, LieSubalgebra.subsingleton_bot, LieModule.isNilpotent_of_top_iff, LieSubalgebra.bot_coe, LieSubalgebra.span_union, skewAdjointLieSubalgebraEquiv_symm_apply, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, LieSubalgebra.mem_bot, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieHom.quotKerEquivRange_toFun, LieAlgebra.IsKilling.apply_coroot_eq_cast', LieModule.instIsTriangularizableSubtypeEndMemLieSubalgebraRangeToEnd, LieHom.equivRangeOfInjective_apply, LieHom.mem_range_self, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LieModule.isNilpotent_range_toEnd_iff, LieSubalgebra.toSubmodule_le_toSubmodule, LieModule.instIsTriangularizableSubtypeMemLieSubalgebra, LieIdeal.coe_toLieSubalgebra, LieHom.isNilpotent_range, LieSubalgebra.IsCartanSubalgebra.nilpotent, LieSubalgebra.mem_toSubmodule, LieSubalgebra.mem_carrier, LieSubalgebra.lieSpan_mono, LieSubalgebra.engel_carrier, LieSubalgebra.coe_injective, LieAlgebra.IsKilling.chainLength_zero, LieSubalgebra.incl_range, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', IsSl2Triple.mem_toLieSubalgebra_iff, LieSubalgebra.sInf_coe, LieAlgebra.instIsSolvableSubtypeMemLieSubalgebraTop, LieSubalgebra.coe_bracket_of_module, LieSubalgebra.inf_coe, LieSubalgebra.coe_normalizer_eq_normalizer, LieModule.exists_forall_mem_corootSpace_smul_add_eq_zero, LieSubalgebra.coe_toSubmodule, LieSubalgebra.sInf_toSubmodule, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieSubalgebra.coe_ad_pow, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieSubalgebra.subsingleton_of_bot, LieSubalgebra.mem_toLieSubmodule, LieSubalgebra.self_mem_engel, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LieDerivation.IsKilling.killingForm_restrict_range_ad, LieAlgebra.IsKilling.chainLength_neg, RootPairing.GeckConstruction.span_range_h'_eq_top, LieSubalgebra.coe_sInf, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieEquiv.ofSubalgebras_apply, LieSubalgebra.coe_set_eq, LieSubalgebra.toSubmodule_injective, LieModuleHom.coe_restrictLie, LieSubalgebra.map_le_iff_le_comap, LieAlgebra.IsKilling.apply_coroot_eq_cast, LieSubalgebra.coe_incl', LieSubalgebra.span_empty, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, LieHom.rangeRestrict_apply, LieAlgebra.SpecialLinear.sl_bracket, LieSubalgebra.subset_lieSpan, LieHom.coe_range, LieModule.Weight.isZero_neg, instIsNilpotentSubtypeMemLieSubalgebraTop, LieSubalgebra.mem_comap, LieSubalgebra.mem_inf, LieEquiv.lieSubalgebraMap_apply, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieAlgebra.rootSpace_zero_eq, LieDerivation.eqOn_lieSpan, mem_skewAdjointMatricesLieSubalgebra, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, LieSubalgebra.lieModule, LieHom.range_eq_top, RootPairing.GeckConstruction.instIsIrreducible, LieSubalgebra.mem_engel_iff, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra, LieHom.range_eq_map, LieHom.range_coe, LieSubalgebra.instCanonicallyOrderedAdd, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieSubalgebra.instIsLieTowerSubtypeMem, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, LieSubalgebra.coe_bracket, LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace, LieModule.coe_genWeightSpace_of_top, RootPairing.GeckConstruction.cartanSubalgebra_le_lieAlgebra, LieHom.quotKerEquivRange_invFun, LieSubalgebra.toSubmodule_eq_bot, LieSubalgebra.top_coe, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff, LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit, LieAlgebra.rootSpace_comap_eq_genWeightSpace, LieSubalgebra.ext_iff', LieAlgebra.restrict_killingForm, mem_skewAdjointMatricesLieSubalgebra_unit_smul, LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.instIsNilpotentSubtypeMemOfIsCartanSubalgebra, LieAlgebra.IsKilling.coroot_neg, LieSubalgebra.mem_normalizer_iff', LieHom.idealRange_eq_lieSpan_range, LieSubalgebra.coe_inf, LieAlgebra.SpecialLinear.val_single, LieSubalgebra.instIsNoetherianSubtypeMem, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, LieSubalgebra.engel_zero, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, RootPairing.GeckConstruction.h_mem_lieAlgebra, LieSubalgebra.exists_lieIdeal_coe_eq_iff, LieAlgebra.rank_le_finrank_engel, LieSubalgebra.topEquiv_apply, LieDerivation.IsKilling.range_ad_eq_top, LieSubalgebra.instNontrivialSubtypeMemOfIsCartanSubalgebra, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieHom.isSolvable_range, LieSubalgebra.normalizer_eq_self_iff, LieAlgebra.IsKilling.rootSystem_pairing_apply, LieSubalgebra.coe_incl, LieSubalgebra.ext_iff, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, LieSubalgebra.lieSpan_le, LieSubalgebra.toSubmodule_eq_top, LieIdeal.normalizer_eq_top, LieSubalgebra.mk_coe, LieAlgebra.IsKilling.coroot_eq_zero_iff, LieAlgebra.top_isCartanSubalgebra_of_nilpotent, LieHom.range_subset_idealRange, LieEquiv.ofSubalgebras_symm_apply, LieSubalgebra.coe_zero_iff_zero, LieEquiv.ofInjective_apply, LieSubalgebra.inf_toSubmodule, LieIdeal.top_toLieSubalgebra, LieAlgebra.IsKilling.chainBotCoeff_le_chainLength, LieSubalgebra.instIsOrderedAddMonoid, LieAlgebra.mem_corootSpace', LieSubalgebra.mem_map, LieSubalgebra.zero_mem, LieAlgebra.isNilpotent_range_ad_iff, LieAlgebra.IsKilling.traceForm_coroot, LieAlgebra.IsExtension.range_eq_top, LieSubalgebra.mem_mk_iff', LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieAlgebra.IsKilling.coroot_zero, LieModule.Weight.isNonZero_neg, LieModule.instIsFaithfulSubtypeMemLieSubalgebra, LieSubalgebra.span_iUnion, LieHom.mem_range, LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff, LieModule.coe_lcs_range_toEnd_eq, LieAlgebra.mem_zeroRootSubalgebra, LieAlgebra.isRegular_iff_finrank_engel_eq_rank, LieSubalgebra.instIsScalarTowerSubtypeMem, LieSubalgebra.wellFoundedGT_of_noetherian, LieSubalgebra.mem_coe, LieAlgebra.mem_corootSpace, RootPairing.GeckConstruction.f_mem_lieAlgebra, LieAlgebra.IsKilling.chainTopCoeff_le_chainLength, RootPairing.GeckConstruction.e_mem_lieAlgebra, LieAlgebra.SpecialLinear.val_singleSubSingle, LieSubalgebra.lieSpan_eq, LieAlgebra.IsKilling.span_weight_eq_top, LieSubalgebra.bot_toSubmodule, skewAdjointMatricesLieSubalgebraEquiv_apply, LieSubalgebra.le_def, LieModule.Weight.toLinear_neg, LieSubalgebra.add_eq_sup, LieSubalgebra.mem_lieSpan, LieSubalgebra.mem_top, LieSubalgebra.instSMulMemClass, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, LieSubalgebra.instIsCentralScalarSubtypeMem, LieSubalgebra.sInf_glb, LieAlgebra.le_zeroRootSubalgebra, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, LieSubalgebra.mem_normalizer_iff, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', LieAlgebra.IsKilling.rootSystem_root_apply, LieSubalgebra.instIsArtinianSubtypeMem, LieSubalgebra.normalizer_eq_self_of_isCartanSubalgebra, LieModule.Weight.coe_neg, LieSubalgebra.gc_map_comap, LieSubalgebra.eq_bot_iff, LieSubalgebra.mem_mk_iff, LieSubalgebra.instAddSubgroupClass, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, LieSubalgebra.coe_ad, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, LieAlgebra.SpecialLinear.sl_non_abelian, LieAlgebra.IsKilling.instIsLieAbelianOfIsCartanSubalgebra, LieSubalgebra.ad_comp_incl_eq
instCoeLieSubalgebraSubmodule πŸ“–CompOpβ€”
instInhabitedLieSubalgebra πŸ“–CompOpβ€”
instZeroLieSubalgebra πŸ“–CompOpβ€”

---

← Back to Index