Documentation Verification Report

Submodule

πŸ“ Source: Mathlib/Algebra/Lie/Submodule.lean

Statistics

MetricCount
DefinitionsofTop, codRestrict, ker, range, toLieSubmodule, topEquiv, LieSubmodule, coeSort, coeSubmodule, comap, copy, equivMapOfInjective, gi, incl, inclusion, instAdd, instAddCommMonoid, instBot, instCompleteLattice, instInfSet, instInhabited, instLieRingModuleSubtypeMem, instMax, instMin, instPartialOrder, instSetLike, instSupSet, instTop, instUniqueBot, instUniqueOfSubsingleton, instZero, lieSpan, map, mapOrderEmbedding, orderIsoMapComap, toSubmodule, toSubmodule_orderEmbedding
37
TheoremsofTop_apply, range_coe, codRestrict_apply, coe_range, comp_ker_incl, ker_eq_bot, ker_id, ker_toSubmodule, le_ker_iff_map, map_top, mem_ker, mem_range, range_eq_top, toSubmodule_range, coe_toLieSubmodule, mem_toLieSubmodule, topEquiv_apply, add_eq_sup, bot_coe, bot_toSubmodule, codisjoint_toSubmodule, coe_add, coe_bracket, coe_copy, coe_iInf, coe_inclusion, coe_inf, coe_injective, coe_lieSpan_submodule_eq_iff, coe_map, coe_neg, coe_sInf, coe_smul, coe_sub, coe_toSet_mk, coe_toSubmodule, coe_zero, comap_incl_eq_bot, comap_incl_eq_top, comap_incl_self, comap_inf, copy_eq, disjoint_toSubmodule, eq_bot_iff, ext, ext_iff, gc_map_comap, iInf_coe, iInf_toSubmodule, iSupIndep_toSubmodule, iSup_induction, iSup_induction', iSup_toSubmodule, iSup_toSubmodule_eq_top, incl_apply, incl_coe, incl_eq_val, inclusion_apply, inclusion_injective, inf_coe, inf_toSubmodule, injective_incl, instAddSubgroupClass, instCanLiftSubmoduleToSubmoduleForallForallForallMemBracket, instIsArtinianSubtypeMem, instIsAtomicOfIsArtinian, instIsCompactlyGenerated, instIsModularLattice, instIsNoetherianSubtypeMem, instIsTorsionFreeSubtypeMem, instLieModule, instNontrivial, instSMulMemClass, isCompactElement_lieSpan_singleton, isCompl_toSubmodule, ker_incl, lieSpan_eq, lieSpan_eq_bot_iff, lieSpan_induction, lieSpan_le, lieSpan_mono, lie_mem, mapOrderEmbedding_apply, map_bot, map_comp, map_iSup, map_id, map_incl_le, map_incl_lt_iff_lt_top, map_incl_top, map_inf, map_inf_le, map_injective_of_injective, map_le_iff_le_comap, map_le_map_iff, map_le_range, map_mono, map_sup, mem_bot, mem_carrier, mem_coe, mem_comap, mem_iInf, mem_iSup_of_mem, mem_inf, mem_lieSpan, mem_map, mem_map_of_mem, mem_mk_iff, mem_mk_iff', mem_sup, mem_toSubmodule, mem_top, mk_eq_bot_iff, mk_eq_top_iff, mk_eq_zero, nontrivial_iff, nontrivial_iff_ne_bot, orderIsoMapComap_apply, orderIsoMapComap_symm_apply, range_incl, sInf_coe, sInf_toSubmodule, sInf_toSubmodule_eq_iInf, sSup_image_lieSpan_singleton, sSup_toSubmodule, sSup_toSubmodule_eq_iSup, span_empty, span_iUnion, span_union, span_univ, submodule_span_le_lieSpan, subset_lieSpan, subsingleton_iff, subsingleton_of_bot, sup_toSubmodule, toSubmodule_comap, toSubmodule_eq_bot, toSubmodule_eq_top, toSubmodule_inj, toSubmodule_injective, toSubmodule_le_toSubmodule, toSubmodule_map, toSubmodule_mk, toSubmodule_orderEmbedding_apply, top_coe, top_toSubmodule, wellFoundedGT_of_noetherian, wellFoundedLT_of_isArtinian, zero_mem, exists_lieSubmodule_coe_eq_iff
151
Total188

LieModuleEquiv

Definitions

NameCategoryTheorems
ofTop πŸ“–CompOp
1 mathmath: ofTop_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ofTop_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleEquiv
LieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
Top.top
LieSubmodule.instTop
AddSubgroupClass.toAddCommGroup
LieSubmodule.instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
LieSubmodule.instSMulMemClass
LieSubmodule.instLieRingModuleSubtypeMem
EquivLike.toFunLike
instEquivLike
ofTop
β€”LieSubmodule.instAddSubgroupClass
LieSubmodule.instSMulMemClass
range_coe πŸ“–mathematicalβ€”LieModuleHom.range
toLieModuleHom
Top.top
LieSubmodule
LieSubmodule.instTop
β€”LieModuleHom.range_eq_top
surjective

LieModuleHom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
1 mathmath: codRestrict_apply
ker πŸ“–CompOp
8 mathmath: ker_eq_bot, ker_id, LieSubmodule.Quotient.mk'_ker, mem_ker, le_ker_iff_map, LieSubmodule.ker_incl, comp_ker_incl, ker_toSubmodule
range πŸ“–CompOp
11 mathmath: mem_range, toSubmodule_range, LieSubmodule.range_incl, LieModule.map_genWeightSpace_eq_of_injective, LieSubmodule.Quotient.range_mk', coe_range, range_eq_top, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieSubmodule.map_le_range, map_top, LieModuleEquiv.range_coe

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict_apply πŸ“–mathematicalLieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
DFunLike.coe
LieModuleHom
instFunLike
AddSubgroupClass.toAddCommGroup
LieSubmodule.instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
LieSubmodule.instSMulMemClass
LieSubmodule.instLieRingModuleSubtypeMem
codRestrict
β€”LieSubmodule.instAddSubgroupClass
LieSubmodule.instSMulMemClass
coe_range πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
LieSubmodule.instSetLike
range
Set.range
DFunLike.coe
LieModuleHom
instFunLike
β€”β€”
comp_ker_incl πŸ“–mathematicalβ€”comp
LieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
ker
AddSubgroupClass.toAddCommGroup
LieSubmodule.instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
LieSubmodule.instSMulMemClass
LieSubmodule.instLieRingModuleSubtypeMem
LieSubmodule.incl
LieModuleHom
instZero
β€”ext
LieSubmodule.instAddSubgroupClass
LieSubmodule.instSMulMemClass
mem_ker
ker_eq_bot πŸ“–mathematicalβ€”ker
Bot.bot
LieSubmodule
LieSubmodule.instBot
DFunLike.coe
LieModuleHom
instFunLike
β€”ker_toSubmodule
LieSubmodule.bot_toSubmodule
LinearMap.ker_eq_bot
coe_toLinearMap
ker_id πŸ“–mathematicalβ€”ker
id
Bot.bot
LieSubmodule
LieSubmodule.instBot
β€”β€”
ker_toSubmodule πŸ“–mathematicalβ€”LieSubmodule.toSubmodule
ker
LinearMap.ker
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
toLinearMap
β€”β€”
le_ker_iff_map πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
LieSubmodule.instPartialOrder
ker
LieSubmodule.map
Bot.bot
LieSubmodule.instBot
β€”ker.eq_1
eq_bot_iff
LieSubmodule.map_le_iff_le_comap
map_top πŸ“–mathematicalβ€”LieSubmodule.map
Top.top
LieSubmodule
LieSubmodule.instTop
range
β€”LieSubmodule.ext
mem_ker πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
ker
DFunLike.coe
LieModuleHom
instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
mem_range πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
LieSubmodule.instSetLike
range
DFunLike.coe
LieModuleHom
instFunLike
β€”β€”
range_eq_top πŸ“–mathematicalβ€”range
Top.top
LieSubmodule
LieSubmodule.instTop
DFunLike.coe
LieModuleHom
instFunLike
β€”SetLike.ext'_iff
coe_range
LieSubmodule.top_coe
Set.range_eq_univ
toSubmodule_range πŸ“–mathematicalβ€”LieSubmodule.toSubmodule
range
LinearMap.range
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
β€”β€”

LieSubalgebra

Definitions

NameCategoryTheorems
toLieSubmodule πŸ“–CompOp
11 mathmath: coe_normalizer_eq_normalizer, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, mem_toLieSubmodule, LieAlgebra.rootSpace_zero_eq, ucs_eq_self_of_isCartanSubalgebra, isCartanSubalgebra_iff_isUcsLimit, coe_toLieSubmodule, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, normalizer_eq_self_iff, LieAlgebra.toLieSubmodule_le_rootSpace_zero, normalizer_eq_self_of_isCartanSubalgebra
topEquiv πŸ“–CompOp
1 mathmath: topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toLieSubmodule πŸ“–mathematicalβ€”LieSubmodule.toSubmodule
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingModule
lieRingSelfModule
toLieSubmodule
toSubmodule
β€”β€”
mem_toLieSubmodule πŸ“–mathematicalβ€”LieSubmodule
LieSubalgebra
SetLike.instMembership
instSetLike
lieRing
LieRing.toAddCommGroup
LieAlgebra.toModule
lieRingModule
lieRingSelfModule
LieSubmodule.instSetLike
toLieSubmodule
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LieEquiv
LieSubalgebra
SetLike.instMembership
instSetLike
Top.top
instTop
lieRing
lieAlgebra
EquivLike.toFunLike
LieEquiv.instEquivLike
topEquiv
β€”β€”

LieSubmodule

Definitions

NameCategoryTheorems
coeSort πŸ“–CompOpβ€”
coeSubmodule πŸ“–CompOpβ€”
comap πŸ“–CompOp
20 mathmath: mem_comap, comap_bracket_eq, comap_incl_eq_top, comap_incl_eq_bot, ucs_comap_incl, orderIsoMapComap_symm_apply, map_comap_le, comap_map_eq, lowerCentralSeries_eq_lcs_comap, LieAlgebra.rootSpace_comap_eq_genWeightSpace, gc_map_comap, toSubmodule_comap, LieModule.comap_genWeightSpace_eq_of_injective, comap_normalizer, map_le_iff_le_comap, map_comap_eq, comap_inf, le_comap_map, map_comap_incl, comap_incl_self
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
equivMapOfInjective πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
incl πŸ“–CompOp
20 mathmath: TensorProduct.LieModule.mapIncl_def, incl_apply, lowerCentralSeries_map_eq_lcs, map_incl_top, comap_incl_eq_top, comap_incl_eq_bot, ucs_comap_incl, range_incl, map_incl_lt_iff_lt_top, ker_incl, LieModuleHom.comp_ker_incl, map_incl_le, lowerCentralSeries_eq_lcs_comap, incl_eq_val, incl_coe, injective_incl, map_comap_incl, comap_incl_self, LieModule.posFittingComp_map_incl_sup_of_codisjoint, LieModule.genWeightSpace_genWeightSpaceOf_map_incl
inclusion πŸ“–CompOp
3 mathmath: coe_inclusion, inclusion_apply, inclusion_injective
instAdd πŸ“–CompOp
4 mathmath: LieAlgebra.derivedSeriesOfIdeal_add_le_add, LieIdeal.derivedSeries_add_eq_bot, add_eq_sup, LieAlgebra.isSolvableAdd
instAddCommMonoid πŸ“–CompOpβ€”
instBot πŸ“–CompOp
93 mathmath: LieModule.trivial_iff_lower_central_eq_bot, LieAlgebra.derivedLength_zero, bot_toSubmodule, LieModule.traceForm_eq_sum_genWeightSpaceOf, LieAlgebra.isSolvable_iff_int, LieModuleHom.ker_eq_bot, bot_lie, lie_abelian_iff_lie_self_eq_bot, LieAlgebra.hasTrivialRadical_iff, LieAlgebra.IsKilling.corootSpace_eq_bot_iff, isNilpotent_iff_exists_lcs_eq_bot, LieModule.nilpotencyLength_eq_succ_iff, LieModuleHom.ker_id, LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_lt, LieModule.iSup_ucs_le_genWeightSpace_zero, lie_bot, lowerCentralSeries_eq_bot_iff_lcs_eq_bot, LieAlgebra.abelian_of_solvable_ideal_eq_bot_iff, subsingleton_of_bot, bot_coe, isNilpotent_iff_exists_self_le_ucs, comap_incl_eq_bot, LieHom.ker_eq_bot, ucs_comap_incl, LieModule.isNilpotent_iff, lieSpan_eq_bot_iff, LieModule.isNilpotent_iff_int, LieModule.IsNilpotent.nilpotent, LieModule.finite_genWeightSpaceOf_ne_bot, LieIdeal.subsingleton_of_bot, LieAlgebra.isSolvable_iff, trivial_lie_oper_zero, LieModule.posFittingCompOf_eq_bot_of_isNilpotent, LieAlgebra.abelian_iff_derived_one_eq_bot, LieModuleHom.le_ker_iff_map, LieModule.existsβ‚‚_genWeightSpace_smul_add_eq_bot, LieModule.genWeightSpace_chainBotCoeff_sub_one_zsmul_sub, ker_incl, mem_bot, LieAlgebra.IsKilling.rootSpace_one_div_two_smul, LieAlgebra.hasTrivialRadical_iff_no_solvable_ideals, LieAlgebra.IsExtension.ker_eq_bot, LieAlgebra.IsSolvable.solvable_int, LieModule.ideal_oper_maxTrivSubmodule_eq_bot, LieModule.genWeightSpace_chainTopCoeff_add_one_zsmul_add, Quotient.map_mk'_eq_bot_le, LieModule.isNilpotent_iff_exists_ucs_eq_top, LieModule.exists_genWeightSpace_smul_add_eq_bot, LieModule.finite_genWeightSpace_ne_bot, LieIdeal.derivedSeries_eq_bot_iff, LieAlgebra.center_eq_bot, LieModule.isFaithful_iff_ker_eq_bot, LieModule.chainTopCoeff_add_one, LieModule.le_max_triv_iff_bracket_eq_bot, LieAlgebra.IsKilling.ideal_eq_bot_of_isLieAbelian, ucs_le_of_normalizer_eq_self, LieModule.eventually_genWeightSpace_smul_add_eq_bot, LieAlgebra.HasTrivialRadical.radical_eq_bot, LieSubalgebra.normalizer_eq_self_iff, mk_eq_bot_iff, LieAlgebra.IsKilling.killingCompl_top_eq_bot, LieAlgebra.hasTrivialRadical_iff_no_abelian_ideals, LieAlgebra.isFaithful_self_iff, LieModule.iSup_ucs_eq_genWeightSpace_zero, LieModule.IsNilpotent.nilpotent_int, LieAlgebra.derivedSeries_of_bot_eq_bot, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_apply_eq_bot_iff, LieAlgebra.abelian_iff_derived_succ_eq_bot, map_bot, LieModule.genWeightSpace_chainTopCoeff_add_one_nsmul_add, LieAlgebra.IsKilling.rootSpace_two_smul, LieAlgebra.HasTrivialRadical.eq_bot_of_isSolvable, LieAlgebra.ad_ker_eq_bot_of_hasTrivialRadical, LieModule.iInf_lowerCentralSeries_eq_bot_of_isNilpotent, toSubmodule_eq_bot, LieAlgebra.isSolvableBot, LieModule.injOn_genWeightSpace, LieAlgebra.IsSolvable.solvable, LieModule.posFittingComp_eq_bot_of_isNilpotent, ucs_bot_one, LieAlgebra.IsKilling.corootSpace_zero_eq_bot, span_empty, lie_eq_bot_iff, LieModule.genWeightSpace_neg_add_chainBot, eq_bot_iff, LieIdeal.ker_incl, normalizer_bot_eq_maxTrivSubmodule, LieModule.genWeightSpace_add_chainTop, LieIdeal.comap_incl_eq_bot, LieIdeal.map_eq_bot_iff, LieAlgebra.IsSimple.eq_bot_or_eq_top, LieModule.ker_eq_bot, baseChange_bot
instCompleteLattice πŸ“–CompOp
23 mathmath: LieModule.disjoint_genWeightSpaceOf, LieAlgebra.IsSemisimple.booleanGenerators, disjoint_toSubmodule, isCompl_toSubmodule, LieModule.disjoint_lowerCentralSeries_maxTrivSubmodule_iff, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, LieAlgebra.IsSimple.isAtom_top, instIsCompactlyGenerated, LieIdeal.isCompl_killingCompl, LieModule.isCompl_genWeightSpace_zero_posFittingComp, instIsAtomicOfIsArtinian, LieModule.iSupIndep_genWeightSpace, codisjoint_toSubmodule, LieModule.iSupIndep_genWeightSpaceOf, LieAlgebra.InvariantForm.atomistic, LieModule.iSupIndep_genWeightSpace', LieAlgebra.IsSemisimple.sSupIndep_isAtom, iSupIndep_toSubmodule, LieAlgebra.IsSimple.isAtom_iff_eq_top, instIsModularLattice, LieIdeal.comap_incl_eq_bot, LieModule.disjoint_genWeightSpace, LieModule.isCompl_genWeightSpaceOf_zero_posFittingCompOf
instInfSet πŸ“–CompOp
13 mathmath: LieModule.iInf_lowerCentralSeries_eq_posFittingComp, LieModule.posFittingComp_le_iInf_lowerCentralSeries, mem_iInf, sInf_toSubmodule, iInf_coe, iInf_toSubmodule, LieModule.iInf_lcs_le_of_isNilpotent_quot, sInf_toSubmodule_eq_iInf, coe_sInf, LieModule.eventually_iInf_lowerCentralSeries_eq, LieModule.iInf_lowerCentralSeries_eq_bot_of_isNilpotent, coe_iInf, sInf_coe
instInhabited πŸ“–CompOpβ€”
instLieRingModuleSubtypeMem πŸ“–CompOp
80 mathmath: LieAlgebra.abelian_radical_of_hasTrivialRadical, TensorProduct.LieModule.mapIncl_def, LieModule.traceForm_eq_sum_genWeightSpaceOf, lie_abelian_iff_lie_self_eq_bot, LieModule.isNilpotent_toEnd_genWeightSpace_zero, isNilpotent_iff_exists_lcs_eq_bot, LieModule.trace_toEnd_genWeightSpace, LieModule.trivial_iff_le_maximal_trivial, LieModule.shiftedGenWeightSpace.toEnd_eq, LieModule.instIsTrivialSubtypeMemLieSubmoduleMaxTrivSubmodule, LieModule.instIsTriangularizableSubtypeMemLieSubmodule_1, LieAlgebra.derivedSeries_of_derivedLength_succ, traceForm_eq_of_le_idealizer, incl_apply, LieAlgebra.Extension.toKer_bracket, lowerCentralSeries_eq_bot_iff_lcs_eq_bot, lowerCentralSeries_map_eq_lcs, LieAlgebra.abelian_radical_iff_solvable_is_abelian, map_incl_top, subsingleton_of_bot, isNilpotent_iff_exists_self_le_ucs, comap_incl_eq_top, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, comap_incl_eq_bot, ucs_comap_incl, range_incl, map_incl_lt_iff_lt_top, LieAlgebra.Extension.ringModuleOf_bracket, LieIdeal.isLieAbelian_iff, LieAlgebra.abelian_iff_derived_one_eq_bot, ker_incl, toEnd_restrict_eq_toEnd, LieModuleHom.codRestrict_apply, LieModule.trace_comp_toEnd_genWeightSpace_eq, LieModule.instMaxNilpotentSubmoduleIsNilpotent, coe_inclusion, LieModuleHom.comp_ker_incl, map_incl_le, LieModule.maxTrivEquiv_of_equiv_symm_eq_symm, lowerCentralSeries_eq_lcs_comap, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieModule.isNilpotent_of_top_iff', coe_toEnd, coe_bracket, LieAlgebra.IsSemisimple.non_abelian_of_isAtom, LieAlgebra.abelian_of_le_center, LieModuleEquiv.ofTop_apply, LieModule.isNilpotent_toEnd_sub_algebraMap, incl_eq_val, LieModule.maxTrivEquiv_of_refl_eq_refl, inclusion_apply, LieModule.isNilpotent_iff_le_maxNilpotentSubmodule, LieModule.traceForm_genWeightSpace_eq, LieModule.instIsNilpotentSup, LieModule.instIsNilpotentSubtypeMemLieSubmoduleGenWeightSpaceOfNatForallOfIsNoetherian, LieModule.trace_toEnd_genWeightSpaceChain_eq_zero, lieIdeal_oper_eq_tensor_map_range, LieIdeal.isLieAbelian_of_trivial, LieAlgebra.Extension.lie_apply_proj_of_leftInverse_eq, LieAlgebra.Extension.ringModuleOf_bracket_proj, LieAlgebra.abelian_derivedAbelianOfIdeal, LieAlgebra.abelian_iff_derived_succ_eq_bot, coe_toEnd_pow, LieModule.coe_maxTrivEquiv_apply, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, inclusion_injective, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, incl_coe, LieAlgebra.maxNilpotentIdealIsNilpotent, LieModule.coe_maxTrivHom_apply, instLieModule, injective_incl, map_comap_incl, LieModule.isNilpotent_of_le, comap_incl_self, LieAlgebra.rootSpaceProduct_tmul, LieModule.posFittingComp_map_incl_sup_of_codisjoint, LieModule.coe_lowerCentralSeries_ideal_le, LieModule.genWeightSpace_genWeightSpaceOf_map_incl
instMax πŸ“–CompOp
17 mathmath: lie_sup, lcs_sup, sup_lie, span_union, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieAlgebra.IsKilling.sl2SubmoduleOfRoot_eq_sup, sup_toSubmodule, LieIdeal.map_sup_ker_eq_map', mem_sup, LieIdeal.comap_map_eq, map_sup, LieModule.instIsNilpotentSup, add_eq_sup, LieIdeal.comap_bracket_eq, LieIdeal.map_sup_ker_eq_map, LieModule.posFittingComp_map_incl_sup_of_codisjoint, LieIdeal.map_sup
instMin πŸ“–CompOp
20 mathmath: LieIdeal.map_comap_incl, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, map_inf_le, mem_inf, lie_inf, comap_incl_eq_bot, lie_le_inf, LieModule.map_genWeightSpace_eq_of_injective, map_inf, coe_inf, normalizer_inf, LieIdeal.comap_bracket_incl, LieIdeal.map_comap_bracket_eq, inf_lie, LieIdeal.map_comap_eq, comap_inf, map_comap_incl, LieIdeal.comap_bracket_eq, inf_toSubmodule, inf_coe
instPartialOrder πŸ“–CompOp
104 mathmath: LieIdeal.map_bracket_le, LieIdeal.comap_incl_eq_top, toSubmodule_le_toSubmodule, LieModule.posFittingComp_le_iInf_lowerCentralSeries, isCompactElement_lieSpan_singleton, LieModule.derivedSeries_le_lowerCentralSeries, LieIdeal.gc_map_comap, lcs_add_le_iff, LieModule.disjoint_genWeightSpaceOf, LieAlgebra.IsSemisimple.booleanGenerators, lie_le_iff, LieAlgebra.derivedSeriesOfIdeal_succ_le, map_inf_le, LieModule.map_genWeightSpace_le, LieModule.trivial_iff_le_maximal_trivial, disjoint_toSubmodule, LieModule.iSup_ucs_le_genWeightSpace_zero, isCompl_toSubmodule, toSubmodule_orderEmbedding_apply, orderIsoMapComap_apply, lie_inf, isNilpotent_iff_exists_self_le_ucs, LieModule.disjoint_lowerCentralSeries_maxTrivSubmodule_iff, comap_incl_eq_top, LieIdeal.le_killingCompl_top_of_isLieAbelian, LieIdeal.derivedSeries_map_le, map_incl_lt_iff_lt_top, LieModule.genWeightSpace_le_genWeightSpaceOf, lie_le_inf, LieAlgebra.derivedSeriesOfIdeal_le_self, monotone_normalizer, orderIsoMapComap_symm_apply, LieModule.lowerCentralSeriesLast_le_of_not_isTrivial, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, LieAlgebra.IsSimple.isAtom_top, LieIdeal.isLieAbelian_iff, LieIdeal.map_mono, LieModuleHom.le_ker_iff_map, LieModule.antitone_lowerCentralSeries, LieAlgebra.center_le_radical, LieModule.iInf_lcs_le_of_isNilpotent_quot, LieHom.ker_le_comap, LieIdeal.comap_bracket_le, LieIdeal.map_lowerCentralSeries_le, map_comap_le, LieAlgebra.derivedSeriesOfIdeal_antitone, ucs_eq_top_iff, top_lie_le_iff_le_normalizer, LieModule.lowerCentralSeriesLast_le_max_triv, LieAlgebra.derivedSeriesOfIdeal_add_le_add, map_incl_le, LieModule.isNilpotent_quotient_iff, LieModule.genWeightSpace_le_genWeightSpaceChain, Quotient.map_mk'_eq_bot_le, LieIdeal.isCompl_killingCompl, lieSpan_mono, wellFoundedLT_of_isArtinian, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieModule.isCompl_genWeightSpace_zero_posFittingComp, lcs_le_iff, instIsAtomicOfIsArtinian, LieModule.le_max_triv_iff_bracket_eq_bot, LieIdeal.comap_mono, wellFoundedGT_of_noetherian, ucs_le_of_normalizer_eq_self, inf_lie, lie_le_right, gc_map_comap, LieModule.weightSpace_le_genWeightSpace, LieModule.map_lowerCentralSeries_le, LieIdeal.comap_map_le, LieModule.isNilpotent_iff_le_maxNilpotentSubmodule, LieIdeal.map_le_iff_le_comap, codisjoint_toSubmodule, le_normalizer, LieAlgebra.derivedSeries_lt_top_of_solvable, LieModule.posFittingCompOf_le_lowerCentralSeries, mapOrderEmbedding_apply, LieHom.map_le_idealRange, lieSpan_le, LieIdeal.map_le, LieAlgebra.toLieSubmodule_le_rootSpace_zero, map_le_map_iff, LieAlgebra.center_le_maxNilpotentIdeal, LieModule.posFittingCompOf_le_posFittingComp, map_le_iff_le_comap, LieAlgebra.maxNilpotentIdeal_le_radical, gc_lcs_ucs, LieAlgebra.InvariantForm.atomistic, map_le_range, LieModule.map_posFittingComp_le, lcs_le_self, LieHom.le_ker_iff, LieAlgebra.IsSemisimple.sSupIndep_isAtom, le_comap_map, LieAlgebra.LieIdeal.solvable_iff_le_radical, LieAlgebra.IsSimple.isAtom_iff_eq_top, lie_le_left, LieIdeal.comap_incl_eq_bot, LieIdeal.map_eq_bot_iff, LieIdeal.map_comap_le, gc_top_lie_normalizer, LieModule.disjoint_genWeightSpace, LieModule.isCompl_genWeightSpaceOf_zero_posFittingCompOf
instSetLike πŸ“–CompOp
232 mathmath: LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map, coe_smul, LieModule.shiftedGenWeightSpace.shift_apply, LieAlgebra.Extension.incl_apply_mem_ker, LieModuleHom.mem_range, coe_map, LieAlgebra.abelian_radical_of_hasTrivialRadical, LieAlgebra.IsSemisimple.isSimple_of_isAtom, LieIdeal.comap_incl_eq_top, LieModule.Weight.exists_ne_zero, TensorProduct.LieModule.mapIncl_def, Quotient.mk_eq_zero, LieIdeal.restrict_killingForm, coe_toSet_mk, mem_comap, LieIdeal.coe_bracket_of_module, LieModule.traceForm_eq_sum_genWeightSpaceOf, LieModule.traceForm_eq_sum_finrank_nsmul', LieAlgebra.InvariantForm.orthogonal_carrier, LieHom.mem_idealRange, lie_abelian_iff_lie_self_eq_bot, LieModule.shiftedGenWeightSpace.instSubtypeMemLieSubmodule, LieIdeal.map_comap_incl, coe_sub, LieModule.isNilpotent_toEnd_genWeightSpace_zero, isNilpotent_iff_exists_lcs_eq_bot, LieIdeal.incl_injective, LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap, lie_le_iff, LieModule.exists_nontrivial_weightSpace_of_lieIdeal, LieAlgebra.le_solvable_ideal_solvable, LieModule.trace_toEnd_genWeightSpace, mem_inf, LieModule.trivial_iff_le_maximal_trivial, lieIdeal_oper_eq_linear_span', LieModule.shiftedGenWeightSpace.toEnd_eq, mem_mk_iff', LieModule.instIsTrivialSubtypeMemLieSubmoduleMaxTrivSubmodule, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, mem_toSubmodule, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, LieModule.instIsTriangularizableSubtypeMemLieSubmodule_1, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieAlgebra.derivedSeries_of_derivedLength_succ, traceForm_eq_of_le_idealizer, LieModule.mem_weightSpace, incl_apply, LieModule.mem_posFittingCompOf, LieAlgebra.Extension.toKer_bracket, LieAlgebra.non_trivial_center_of_isNilpotent, LieIdeal.instIsNilpotentSubtypeMemLieSubmoduleOfIsNilpotent, mem_iInf, coe_zero, LieIdeal.comap_bracket_incl_of_le, lowerCentralSeries_eq_bot_iff_lcs_eq_bot, LieModuleHom.mem_ker, LieIdeal.coe_toLieSubalgebra, instSMulMemClass, lowerCentralSeries_map_eq_lcs, LieIdeal.mem_killingCompl, LieAlgebra.abelian_radical_iff_solvable_is_abelian, LieModule.instIsTriangularizableSubtypeMemLieSubmodule, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, map_incl_top, subsingleton_of_bot, bot_coe, iInf_coe, LieModule.mem_genWeightSpace, isNilpotent_iff_exists_self_le_ucs, LieModule.mem_ker, comap_incl_eq_top, LieIdeal.incl_coe, LieAlgebra.Extension.lie_incl_mem_ker, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, comap_incl_eq_bot, ucs_comap_incl, LieModule.nontrivial_max_triv_of_isNilpotent, instIsTorsionFreeSubtypeMem, range_incl, LieIdeal.incl_isIdealMorphism, map_incl_lt_iff_lt_top, LieIdeal.lieModule, LieIdeal.subsingleton_of_bot, LieSubalgebra.mem_toLieSubmodule, LinearMap.BilinForm.lieInvariant_iff, subset_lieSpan, LieAlgebra.Extension.ringModuleOf_bracket, mem_baseChange_iff, LieIdeal.isLieAbelian_iff, mem_mk_iff, mapsTo_pow_toEnd_sub_algebraMap, LieAlgebra.IsKilling.coroot_mem_corootSpace, LieAlgebra.abelian_iff_derived_one_eq_bot, LieIdeal.incl_range, LieModule.exists_nontrivial_weightSpace_of_isNilpotent, LieModule.mem_maxTrivSubmodule, ker_incl, instIsArtinianSubtypeMem, toEnd_restrict_eq_toEnd, LieIdeal.coe_inclusion, mem_bot, LieIdeal.inclusion_injective, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieModuleHom.coe_range, LieModule.trace_comp_toEnd_genWeightSpace_eq, zero_mem, LieModule.instMaxNilpotentSubmoduleIsNilpotent, coe_inclusion, LieModule.iterate_toEnd_mem_lowerCentralSeriesβ‚‚, LieModuleHom.comp_ker_incl, LieIdeal.topEquiv_apply, LieModule.mem_posFittingComp, map_incl_le, coe_inf, LieModule.maxTrivEquiv_of_equiv_symm_eq_symm, LieModule.shiftedGenWeightSpace.coe_lie_shiftedGenWeightSpace_apply, lowerCentralSeries_eq_lcs_comap, lieSpan_eq, LieModule.traceForm_eq_sum_finrank_nsmul, LieDerivation.IsKilling.rangeAdOrthogonal_carrier, mem_sup, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieIdeal.derivedSeries_eq_bot_iff, sSup_image_lieSpan_singleton, LieIdeal.comap_bracket_incl, LieModule.shiftedGenWeightSpace.instIsNilpotentSubtypeMemLieSubmoduleOfIsNoetherian, mem_idealizer, LieIdeal.killingForm_eq, LieModule.isNilpotent_of_top_iff', ext_iff, coe_toEnd, LieAlgebra.InvariantForm.mem_orthogonal, coe_neg, LieIdeal.coe_derivedSeries_eq_int, LieModule.exists_nontrivial_weightSpace_of_isSolvable, coe_bracket, LieAlgebra.IsSemisimple.non_abelian_of_isAtom, LieAlgebra.abelian_of_le_center, LieModuleEquiv.ofTop_apply, LieModule.isNilpotent_toEnd_sub_algebraMap, LieIdeal.incl_idealRange, coe_injective, LieIdeal.comap_incl_self, incl_eq_val, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, LieModule.maxTrivEquiv_of_refl_eq_refl, Quotient.mk_eq_zero', LieHom.mem_ker, nontrivial_iff_ne_bot, LieModule.coe_lowerCentralSeries_eq_int, inclusion_apply, coe_toSubmodule, top_coe, LieHom.range_subset_idealRange, LieAlgebra.radicalIsSolvable, LieModule.isNilpotent_iff_le_maxNilpotentSubmodule, LieModule.traceForm_genWeightSpace_eq, LieModule.instIsNilpotentSup, LieAlgebra.IsKilling.finrank_rootSpace_eq_one, LieIdeal.mem_comap, LieModule.instIsNilpotentSubtypeMemLieSubmoduleGenWeightSpaceOfNatForallOfIsNoetherian, LieModule.zero_lt_finrank_genWeightSpace, lieIdeal_oper_eq_tensor_map_range, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieIdeal.isLieAbelian_of_trivial, coe_sInf, lieIdeal_oper_eq_linear_span, LieAlgebra.Extension.lie_apply_proj_of_leftInverse_eq, LieAlgebra.mem_corootSpace', mem_top, LieAlgebra.Extension.ringModuleOf_bracket_proj, LieAlgebra.abelian_derivedAbelianOfIdeal, LieModule.nontrivial_lowerCentralSeriesLast, lieIdeal_oper_eq_span, LieAlgebra.abelian_iff_derived_succ_eq_bot, coe_toEnd_pow, lieSpan_le, LieModule.mem_genWeightSpaceOf, LieIdeal.map_le, LieModule.traceForm_eq_sum_finrank_nsmul_mul, LieModule.coe_maxTrivEquiv_apply, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, instIsNoetherianSubtypeMem, mem_carrier, inclusion_injective, exists_smul_add_of_span_sup_eq_top, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieHom.mem_idealRange_iff, incl_coe, LieAlgebra.mem_corootSpace, LieModule.iterate_toEnd_mem_lowerCentralSeries, LieAlgebra.isSolvableAdd, LieAlgebra.maxNilpotentIdealIsNilpotent, LieModule.coe_maxTrivHom_apply, LieIdeal.coe_lcs_eq, mem_lieSpan, instAddSubgroupClass, instLieModule, LieDerivation.mem_ad_idealRange_iff, LieAlgebra.derivedLength_eq_derivedLengthOfIdeal, instIsLieTowerSubtypeMemLieSubmodule, LieAlgebra.Extension.twoCocycleOf_coe_coe, injective_incl, LieAlgebra.isSolvableBot, map_comap_incl, LieAlgebra.IsKilling.exists_isSl2Triple_of_weight_isNonZero, LieModule.shiftedGenWeightSpace.shift_symm_apply, LieAlgebra.LieIdeal.solvable_iff_le_radical, LieIdeal.incl_apply, Function.instIsSolvableSubtypeMemLieSubmodule, coe_iInf, mem_normalizer, LieModule.isNilpotent_of_le, LieAlgebra.Extension.lie_toKer_apply, comap_incl_self, LieAlgebra.rootSpaceProduct_tmul, LieModule.posFittingComp_map_incl_sup_of_codisjoint, coe_add, LieIdeal.ker_incl, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, LieIdeal.comap_incl_eq_bot, LieIdeal.inclusion_apply, mem_map, lie_coe_mem_lie, LieModule.coe_lowerCentralSeries_ideal_le, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, sInf_coe, LieAlgebra.isExtension_of_surjective, LieModule.genWeightSpace_genWeightSpaceOf_map_incl, mem_coe, inf_coe
instSupSet πŸ“–CompOp
22 mathmath: map_iSup, iSup_toSubmodule, LieModule.iSup_genWeightSpaceOf_eq_top, LieModule.genWeightSpaceChain_def', LieModule.iSup_genWeightSpace_eq_top', LieModule.iSup_ucs_le_genWeightSpace_zero, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, span_iUnion, LieModule.mem_posFittingComp, mem_iSup_of_mem, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, sSup_toSubmodule, sSup_image_lieSpan_singleton, LieModule.genWeightSpaceChain_def, sSup_toSubmodule_eq_iSup, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieModule.iSup_genWeightSpace_eq_top, LieModule.iSup_ucs_eq_genWeightSpace_zero, iSup_toSubmodule_eq_top, LieAlgebra.IsKilling.coe_invtSubmoduleToLieIdeal_eq_iSup, LieAlgebra.InvariantForm.atomistic
instTop πŸ“–CompOp
63 mathmath: LieIdeal.comap_incl_eq_top, LieModule.lowerCentralSeries_zero, LieModule.iSup_genWeightSpaceOf_eq_top, LieModule.iSup_genWeightSpace_eq_top', LieIdeal.coe_killingCompl_top, lie_top_eq_of_span_sup_eq_top, map_incl_top, span_univ, mk_eq_top_iff, comap_incl_eq_top, LieIdeal.le_killingCompl_top_of_isLieAbelian, LieAlgebra.radical_eq_top_of_isSolvable, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, LieAlgebra.IsSimple.eq_top_of_isAtom, map_incl_lt_iff_lt_top, LieModule.lowerCentralSeries_succ, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, Quotient.range_mk', top_toSubmodule, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, LieAlgebra.IsSimple.isAtom_top, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, ucs_eq_top_iff, top_lie_le_iff_le_normalizer, LieIdeal.topEquiv_apply, LieModule.maxNilpotentSubmodule_eq_top_of_isNilpotent, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieAlgebra.derivedSeries_def, eq_top_of_isIrreducible, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_apply_eq_top_iff, LieAlgebra.IsKilling.biSup_corootSpace_eq_top, LieModuleHom.range_eq_top, LieModule.isNilpotent_iff_exists_ucs_eq_top, LieModule.isNilpotent_of_top_iff', LieAlgebra.isLieAbelian_iff_center_eq_top, LieHom.idealRange_eq_map, LieModule.le_max_triv_iff_bracket_eq_bot, LieAlgebra.maxNilpotentIdeal_eq_top_of_isNilpotent, LieModuleEquiv.ofTop_apply, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, LieIdeal.comap_incl_self, LieModule.iSup_genWeightSpace_eq_top, LieAlgebra.IsKilling.killingCompl_top_eq_bot, top_coe, LieIdeal.lcs_zero, LieModule.isTrivial_iff_max_triv_eq_top, LieModule.zero_genWeightSpace_eq_top_of_nilpotent', LieIdeal.top_toLieSubalgebra, iSup_toSubmodule_eq_top, LieAlgebra.derivedSeries_lt_top_of_solvable, mem_top, LieIdeal.derivedSeries_succ_eq_top_iff, lcs_succ, toSubmodule_eq_top, baseChange_top, LieAlgebra.IsSimple.isAtom_iff_eq_top, LieModuleHom.map_top, comap_incl_self, LieIdeal.lcs_top, LieModuleEquiv.range_coe, LieAlgebra.IsSimple.eq_bot_or_eq_top, LieHom.idealRange_eq_top_of_surjective, gc_top_lie_normalizer
instUniqueBot πŸ“–CompOpβ€”
instUniqueOfSubsingleton πŸ“–CompOpβ€”
instZero πŸ“–CompOpβ€”
lieSpan πŸ“–CompOp
16 mathmath: isCompactElement_lieSpan_singleton, span_univ, lieSpan_eq_bot_iff, span_union, subset_lieSpan, span_iUnion, lieSpan_mono, lieSpan_eq, sSup_image_lieSpan_singleton, coe_lieSpan_submodule_eq_iff, LieHom.idealRange_eq_lieSpan_range, lieIdeal_oper_eq_span, lieSpan_le, mem_lieSpan, submodule_span_le_lieSpan, span_empty
map πŸ“–CompOp
41 mathmath: map_iSup, coe_map, map_injective_of_injective, map_inf_le, LieModule.map_genWeightSpace_le, orderIsoMapComap_apply, lowerCentralSeries_map_eq_lcs, map_incl_top, toSubmodule_map, map_incl_lt_iff_lt_top, LieModule.map_genWeightSpace_eq_of_injective, LieModule.map_genWeightSpace_eq, LieModuleHom.le_ker_iff_map, map_inf, map_comap_le, comap_map_eq, map_incl_le, Quotient.map_mk'_eq_bot_le, LieModule.map_posFittingComp_eq, map_id, gc_map_comap, LieModule.map_lowerCentralSeries_le, map_sup, mapOrderEmbedding_apply, map_bot, mem_map_of_mem, LieModule.map_lowerCentralSeries_eq, map_comp, map_le_map_iff, map_le_iff_le_comap, map_comap_eq, map_le_range, LieModule.map_posFittingComp_le, map_bracket_eq, le_comap_map, map_comap_incl, LieModuleHom.map_top, map_mono, LieModule.posFittingComp_map_incl_sup_of_codisjoint, mem_map, LieModule.genWeightSpace_genWeightSpaceOf_map_incl
mapOrderEmbedding πŸ“–CompOp
1 mathmath: mapOrderEmbedding_apply
orderIsoMapComap πŸ“–CompOp
2 mathmath: orderIsoMapComap_apply, orderIsoMapComap_symm_apply
toSubmodule πŸ“–CompOp
68 mathmath: Submodule.exists_lieSubmodule_coe_eq_iff, instCanLiftSubmoduleToSubmoduleForallForallForallMemBracket, bot_toSubmodule, toSubmodule_le_toSubmodule, iSup_toSubmodule, LieModule.exists_genWeightSpace_zero_le_ker_of_isNoetherian, LieAlgebra.coe_zeroRootSubalgebra, lieIdeal_oper_eq_linear_span', mem_toSubmodule, disjoint_toSubmodule, toSubmodule_injective, isCompl_toSubmodule, toSubmodule_orderEmbedding_apply, lie_top_eq_of_span_sup_eq_top, sInf_toSubmodule, LieModuleHom.toSubmodule_range, coe_map_toEnd_le, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', toSubmodule_map, LieModule.exists_genWeightSpace_le_ker_of_isNoetherian, LieModule.coe_genWeightSpaceOf_zero, LieSubalgebra.coe_normalizer_eq_normalizer, LieIdeal.toLieSubalgebra_toSubmodule, LieIdeal.map_toSubmodule, trace_eq_trace_restrict_of_le_idealizer, top_toSubmodule, mem_baseChange_iff, iInf_toSubmodule, toSubmodule_inj, toEnd_restrict_eq_toEnd, coe_lowerCentralSeries_ideal_quot_eq, Function.Surjective.lieModule_lcs_map_eq, sup_toSubmodule, LieIdeal.coe_map_of_surjective, LieModuleHom.ker_toSubmodule, sSup_toSubmodule, LieModule.coe_genWeightSpace_of_top, sInf_toSubmodule_eq_iInf, coe_lieSpan_submodule_eq_iff, LieSubalgebra.coe_toLieSubmodule, LieAlgebra.InvariantForm.orthogonal_isCompl_toSubmodule, sSup_toSubmodule_eq_iSup, toSubmodule_comap, coe_toSubmodule, codisjoint_toSubmodule, iSup_toSubmodule_eq_top, lieIdeal_oper_eq_linear_span, LieAlgebra.InvariantForm.orthogonal_toSubmodule, LieAlgebra.IsKilling.coe_invtSubmoduleToLieIdeal_eq_iSup, mem_carrier, LieModule.coe_lcs_range_toEnd_eq, incl_coe, LieIdeal.toSubmodule_killingCompl, toSubmodule_eq_top, LieHom.ker_toSubmodule, LieIdeal.coe_lcs_eq, toSubmodule_eq_bot, coe_baseChange, submodule_span_le_lieSpan, iSupIndep_toSubmodule, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, toSubmodule_mk, lieModule_lcs_map_le, LieModule.coe_lowerCentralSeries_ideal_le, LieIdeal.comap_toSubmodule, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton, inf_toSubmodule, Quotient.is_quotient_mk
toSubmodule_orderEmbedding πŸ“–CompOp
1 mathmath: toSubmodule_orderEmbedding_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_sup πŸ“–mathematicalβ€”LieSubmodule
instAdd
instMax
β€”β€”
bot_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
Bot.bot
instBot
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
bot_toSubmodule πŸ“–mathematicalβ€”toSubmodule
Bot.bot
LieSubmodule
instBot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”β€”
codisjoint_toSubmodule πŸ“–mathematicalβ€”Codisjoint
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderTop
toSubmodule
LieSubmodule
instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”codisjoint_iff
sup_toSubmodule
top_toSubmodule
coe_add πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddMemClass.toAddCommSemigroup
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
β€”AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
coe_bracket πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
Bracket.bracket
LieRingModule.toBracket
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
instLieRingModuleSubtypeMem
β€”instAddSubgroupClass
coe_copy πŸ“–mathematicalSetLike.coe
LieSubmodule
instSetLike
copyβ€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
iInf
instInfSet
Set.iInter
β€”iInf.eq_1
coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_inclusion πŸ“–mathematicalLieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
LieModuleHom
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
inclusion
β€”instAddSubgroupClass
instSMulMemClass
coe_inf πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_injective πŸ“–mathematicalβ€”LieSubmodule
Set
SetLike.coe
instSetLike
β€”SetLike.coe_injective
coe_lieSpan_submodule_eq_iff πŸ“–mathematicalβ€”toSubmodule
lieSpan
SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
β€”Submodule.exists_lieSubmodule_coe_eq_iff
mem_toSubmodule
lie_mem
subset_lieSpan
coe_toSubmodule
lieSpan_eq
coe_map πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
map
Set.image
DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
β€”β€”
coe_neg πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubgroupClass.toNegMemClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddSubgroupClass
β€”AddSubgroupClass.toNegMemClass
instAddSubgroupClass
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”coe_toSubmodule
sInf_toSubmodule
Submodule.coe_sInf
Set.ext
coe_smul πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubmoduleClass.module
instSMulMemClass
β€”instAddSubgroupClass
instSMulMemClass
coe_sub πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddSubgroupClass
SubNegMonoid.toSub
β€”instAddSubgroupClass
coe_toSet_mk πŸ“–mathematicalSet
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddZero.toZero
AddSubsemigroup.carrier
AddSubmonoid.toAddSubsemigroup
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Submodule.toAddSubmonoid
Bracket.bracket
LieRingModule.toBracket
SetLike.coe
LieSubmodule
instSetLike
β€”β€”
coe_toSubmodule πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
toSubmodule
LieSubmodule
instSetLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
ZeroMemClass.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
comap_incl_eq_bot πŸ“–mathematicalβ€”comap
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Bot.bot
instBot
instMin
β€”instAddSubgroupClass
instSMulMemClass
Submodule.disjoint_iff_comap_eq_bot
disjoint_iff
comap_incl_eq_top πŸ“–mathematicalβ€”comap
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Top.top
instTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”instAddSubgroupClass
instSMulMemClass
toSubmodule_comap
incl_coe
top_toSubmodule
Submodule.comap_subtype_eq_top
toSubmodule_le_toSubmodule
comap_incl_self πŸ“–mathematicalβ€”comap
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Top.top
instTop
β€”instAddSubgroupClass
instSMulMemClass
Submodule.comap_subtype_self
comap_inf πŸ“–mathematicalβ€”comap
LieSubmodule
instMin
β€”β€”
copy_eq πŸ“–mathematicalSetLike.coe
LieSubmodule
instSetLike
copyβ€”SetLike.coe_injective
disjoint_toSubmodule πŸ“–mathematicalβ€”Disjoint
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
toSubmodule
LieSubmodule
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”disjoint_iff
inf_toSubmodule
bot_toSubmodule
eq_bot_iff πŸ“–mathematicalβ€”Bot.bot
LieSubmodule
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”eq_bot_iff
ext πŸ“–β€”LieSubmodule
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
β€”ext
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
LieSubmodule
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
iInf_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
iInf
instInfSet
Set.iInter
β€”coe_iInf
iInf_toSubmodule πŸ“–mathematicalβ€”toSubmodule
iInf
LieSubmodule
instInfSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
β€”iInf.eq_1
sInf_toSubmodule
Submodule.ext
iSupIndep_toSubmodule πŸ“–mathematicalβ€”iSupIndep
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
toSubmodule
LieSubmodule
instCompleteLattice
β€”iSup_toSubmodule
iSup_induction πŸ“–β€”LieSubmodule
SetLike.instMembership
instSetLike
iSup
instSupSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”Submodule.iSup_induction
iSup_toSubmodule
mem_toSubmodule
iSup_induction' πŸ“–β€”mem_iSup_of_mem
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ZeroMemClass.zero_mem
LieSubmodule
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
iSup
instSupSet
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SetLike.instMembership
β€”β€”mem_iSup_of_mem
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
iSup_induction
iSup_toSubmodule πŸ“–mathematicalβ€”toSubmodule
iSup
LieSubmodule
instSupSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”iSup.eq_1
sSup_toSubmodule
Submodule.ext
iSup_toSubmodule_eq_top πŸ“–mathematicalβ€”iSup
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
toSubmodule
Top.top
Submodule.instTop
LieSubmodule
instSupSet
instTop
β€”iSup_toSubmodule
top_toSubmodule
incl_apply πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
incl
β€”instAddSubgroupClass
instSMulMemClass
incl_coe πŸ“–mathematicalβ€”LieModuleHom.toLinearMap
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Submodule.subtype
toSubmodule
β€”instAddSubgroupClass
instSMulMemClass
incl_eq_val πŸ“–mathematicalβ€”DFunLike.coe
LieModuleHom
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
incl
β€”instAddSubgroupClass
instSMulMemClass
inclusion_apply πŸ“–mathematicalLieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
LieModuleHom
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
inclusion
β€”instAddSubgroupClass
instSMulMemClass
inclusion_injective πŸ“–mathematicalLieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
LieModuleHom
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
inclusion
β€”β€”
inf_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
instMin
Set
Set.instInter
β€”coe_inf
inf_toSubmodule πŸ“–mathematicalβ€”toSubmodule
LieSubmodule
instMin
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”β€”
injective_incl πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
DFunLike.coe
LieModuleHom
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
LieModuleHom.instFunLike
incl
β€”Subtype.coe_injective
instAddSubgroupClass πŸ“–mathematicalβ€”AddSubgroupClass
LieSubmodule
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instSetLike
β€”AddSubsemigroup.add_mem'
AddSubmonoid.zero_mem'
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
instCanLiftSubmoduleToSubmoduleForallForallForallMemBracket πŸ“–mathematicalβ€”CanLift
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LieSubmodule
toSubmodule
β€”β€”
instIsArtinianSubtypeMem πŸ“–mathematicalβ€”IsArtinian
LieSubmodule
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
AddCommGroup.toAddGroup
instSMulMemClass
β€”isArtinian_submodule'
instIsAtomicOfIsArtinian πŸ“–mathematicalβ€”IsAtomic
LieSubmodule
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”isAtomic_of_orderBot_wellFounded_lt
IsWellFounded.wf
wellFoundedLT_of_isArtinian
instIsCompactlyGenerated πŸ“–mathematicalβ€”IsCompactlyGenerated
LieSubmodule
instCompleteLattice
β€”isCompactElement_lieSpan_singleton
sSup_image_lieSpan_singleton
instIsModularLattice πŸ“–mathematicalβ€”IsModularLattice
LieSubmodule
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”sup_toSubmodule
IsModularLattice.sup_inf_le_assoc_of_le
Submodule.instIsModularLattice
instIsNoetherianSubtypeMem πŸ“–mathematicalβ€”IsNoetherian
LieSubmodule
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
AddCommGroup.toAddGroup
instSMulMemClass
β€”isNoetherian_submodule'
instIsTorsionFreeSubtypeMem πŸ“–mathematicalβ€”Module.IsTorsionFree
LieSubmodule
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
AddCommGroup.toAddGroup
instSMulMemClass
β€”Ideal.instIsTorsionFreeSubtypeMemSubmodule
instLieModule πŸ“–mathematicalβ€”LieModule
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
β€”instAddSubgroupClass
instSMulMemClass
SetCoe.ext
smul_lie
lie_smul
instNontrivial πŸ“–mathematicalβ€”Nontrivial
LieSubmodule
β€”nontrivial_iff
instSMulMemClass πŸ“–mathematicalβ€”SMulMemClass
LieSubmodule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
instSetLike
β€”Submodule.smul_mem'
isCompactElement_lieSpan_singleton πŸ“–mathematicalβ€”IsCompactElement
LieSubmodule
instPartialOrder
lieSpan
Set
Set.instSingletonSet
β€”CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
SetLike.le_def
instIsConcreteLE
subset_lieSpan
Set.nonempty_coe_sort
Submodule.coe_iSup_of_directed
DirectedOn.directed_val
Set.iUnion_congr_Prop
Set.iUnion_coe_set
SetLike.coe_set_eq
sSup_eq_iSup
iSup_subtype
isCompl_toSubmodule πŸ“–mathematicalβ€”IsCompl
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
toSubmodule
LieSubmodule
instPartialOrder
instCompleteLattice
β€”β€”
ker_incl πŸ“–mathematicalβ€”LieModuleHom.ker
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Bot.bot
instBot
β€”instAddSubgroupClass
instSMulMemClass
LieModuleHom.ker_eq_bot
injective_incl
lieSpan_eq πŸ“–mathematicalβ€”lieSpan
SetLike.coe
LieSubmodule
instSetLike
β€”le_antisymm
lieSpan_le
Eq.subset
Set.instReflSubset
subset_lieSpan
lieSpan_eq_bot_iff πŸ“–mathematicalβ€”lieSpan
Bot.bot
LieSubmodule
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”eq_bot_iff
lieSpan_le
bot_coe
Set.subset_singleton_iff
lieSpan_induction πŸ“–β€”subset_lieSpan
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
zero_mem
lieSpan
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddMemClass.add_mem
LieSubmodule
instSetLike
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
SMulMemClass.smul_mem
instSMulMemClass
Bracket.bracket
LieRingModule.toBracket
lie_mem
SetLike.instMembership
β€”β€”subset_lieSpan
zero_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
SMulMemClass.smul_mem
instSMulMemClass
lie_mem
lieSpan_le
lieSpan_le πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lieSpan
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_lieSpan
mem_lieSpan
lieSpan_mono πŸ“–mathematicalSet
Set.instHasSubset
LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lieSpan
β€”lieSpan_le
Set.Subset.trans
subset_lieSpan
lie_mem πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
toSubmodule
Bracket.bracket
LieRingModule.toBracket
β€”β€”
mapOrderEmbedding_apply πŸ“–mathematicalDFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
RelEmbedding
LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelEmbedding.instFunLike
mapOrderEmbedding
map
β€”β€”
map_bot πŸ“–mathematicalβ€”map
Bot.bot
LieSubmodule
instBot
β€”ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LieModuleHom.instLinearMapClass
map_comp πŸ“–mathematicalβ€”map
LieModuleHom.comp
β€”SetLike.coe_injective
Set.image_congr
map_iSup πŸ“–mathematicalβ€”map
iSup
LieSubmodule
instSupSet
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
LieModuleHom.id
β€”ext
map_incl_le πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
β€”instAddSubgroupClass
instSMulMemClass
map_incl_top
map_mono
le_top
map_incl_lt_iff_lt_top πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
map
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Top.top
instTop
β€”instAddSubgroupClass
instSMulMemClass
Subtype.coe_injective
LieModuleHom.map_top
range_incl
OrderEmbedding.lt_iff_lt
map_incl_top πŸ“–mathematicalβ€”map
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
Top.top
instTop
β€”instAddSubgroupClass
instSMulMemClass
LieModuleHom.map_top
range_incl
map_inf πŸ“–mathematicalDFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
map
LieSubmodule
instMin
β€”SetLike.coe_injective
Set.image_inter
map_inf_le πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
instMin
β€”Set.image_inter_subset
map_injective_of_injective πŸ“–mathematicalDFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
LieSubmodule
map
β€”SetLike.coe_injective
Function.Injective.image_injective
map_le_iff_le_comap πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_le_map_iff πŸ“–mathematicalDFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”Set.image_subset_image_iff
map_le_range πŸ“–mathematicalβ€”LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
LieModuleHom.range
β€”LieModuleHom.map_top
map_mono
le_top
map_mono πŸ“–mathematicalLieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”Set.image_mono
map_sup πŸ“–mathematicalβ€”map
LieSubmodule
instMax
β€”GaloisConnection.l_sup
gc_map_comap
mem_bot πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
Bot.bot
instBot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Set.mem_singleton_iff
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
toSubmodule
SetLike.coe
LieSubmodule
instSetLike
β€”β€”
mem_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SetLike.coe
LieSubmodule
instSetLike
SetLike.instMembership
β€”β€”
mem_comap πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
comap
DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
β€”β€”
mem_iInf πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”SetLike.mem_coe
coe_iInf
Set.mem_iInter
mem_iSup_of_mem πŸ“–mathematicalLieSubmodule
SetLike.instMembership
instSetLike
iSup
instSupSet
β€”le_iSup
mem_inf πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
instMin
β€”mem_toSubmodule
inf_toSubmodule
Submodule.mem_inf
mem_lieSpan πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
lieSpan
β€”SetLike.mem_coe
lieSpan.eq_1
coe_sInf
Set.mem_iInterβ‚‚
mem_map πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
map
DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
β€”Submodule.mem_map
RingHomSurjective.ids
mem_map_of_mem πŸ“–mathematicalLieSubmodule
SetLike.instMembership
instSetLike
map
DFunLike.coe
LieModuleHom
LieModuleHom.instFunLike
β€”Set.mem_image_of_mem
mem_mk_iff πŸ“–mathematicalSet
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddZero.toZero
AddSubsemigroup.carrier
AddSubmonoid.toAddSubsemigroup
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Submodule.toAddSubmonoid
Bracket.bracket
LieRingModule.toBracket
LieSubmodule
SetLike.instMembership
instSetLike
β€”β€”
mem_mk_iff' πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Bracket.bracket
LieRingModule.toBracket
LieSubmodule
SetLike.instMembership
instSetLike
Submodule
Submodule.setLike
β€”β€”
mem_sup πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
instMax
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”mem_toSubmodule
sup_toSubmodule
Submodule.mem_sup
mem_toSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
toSubmodule
LieSubmodule
instSetLike
β€”β€”
mem_top πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
mk_eq_bot_iff πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Bracket.bracket
LieRingModule.toBracket
Bot.bot
LieSubmodule
instBot
Submodule
Submodule.instBot
β€”bot_toSubmodule
mk_eq_top_iff πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Bracket.bracket
LieRingModule.toBracket
Top.top
LieSubmodule
instTop
Submodule
Submodule.instTop
β€”top_toSubmodule
mk_eq_zero πŸ“–mathematicalLieSubmodule
SetLike.instMembership
instSetLike
ZeroMemClass.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
LieSubmodule
β€”not_iff_not
not_nontrivial_iff_subsingleton
subsingleton_iff
nontrivial_iff_ne_bot πŸ“–mathematicalβ€”Nontrivial
LieSubmodule
SetLike.instMembership
instSetLike
β€”mem_bot
Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_bot_iff
zero_mem
orderIsoMapComap_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
orderIsoMapComap
map
LieModuleEquiv.toLieModuleHom
β€”β€”
orderIsoMapComap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
LieSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoMapComap
comap
LieModuleEquiv.toLieModuleHom
β€”β€”
range_incl πŸ“–mathematicalβ€”LieModuleHom.range
LieSubmodule
SetLike.instMembership
instSetLike
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
incl
β€”instAddSubgroupClass
instSMulMemClass
RingHomSurjective.ids
Submodule.range_subtype
sInf_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”coe_sInf
sInf_toSubmodule πŸ“–mathematicalβ€”toSubmodule
InfSet.sInf
LieSubmodule
instInfSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
setOf
Set
Set.instMembership
β€”β€”
sInf_toSubmodule_eq_iInf πŸ“–mathematicalβ€”toSubmodule
InfSet.sInf
LieSubmodule
instInfSet
iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Set
Set.instMembership
β€”sInf_toSubmodule
Set.image.eq_1
sInf_image
sSup_image_lieSpan_singleton πŸ“–mathematicalβ€”SupSet.sSup
LieSubmodule
instSupSet
Set.image
lieSpan
Set
Set.instSingletonSet
SetLike.coe
instSetLike
β€”le_antisymm
sSup_le
Submodule.mem_sSup
subset_lieSpan
sSup_toSubmodule πŸ“–mathematicalβ€”toSubmodule
SupSet.sSup
LieSubmodule
instSupSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
setOf
Set
Set.instMembership
β€”β€”
sSup_toSubmodule_eq_iSup πŸ“–mathematicalβ€”toSubmodule
SupSet.sSup
LieSubmodule
instSupSet
iSup
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set
Set.instMembership
β€”sSup_toSubmodule
Set.image.eq_1
sSup_image
span_empty πŸ“–mathematicalβ€”lieSpan
Set
Set.instEmptyCollection
Bot.bot
LieSubmodule
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
span_iUnion πŸ“–mathematicalβ€”lieSpan
Set.iUnion
iSup
LieSubmodule
instSupSet
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
span_union πŸ“–mathematicalβ€”lieSpan
Set
Set.instUnion
LieSubmodule
instMax
β€”GaloisConnection.l_sup
GaloisInsertion.gc
span_univ πŸ“–mathematicalβ€”lieSpan
Set.univ
Top.top
LieSubmodule
instTop
β€”eq_top_iff
SetLike.le_def
instIsConcreteLE
subset_lieSpan
submodule_span_le_lieSpan πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
toSubmodule
lieSpan
β€”Submodule.span_le
subset_lieSpan
subset_lieSpan πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
LieSubmodule
instSetLike
lieSpan
β€”SetLike.mem_coe
mem_lieSpan
subsingleton_iff πŸ“–mathematicalβ€”LieSubmoduleβ€”subsingleton_iff_bot_eq_top
top_toSubmodule
bot_toSubmodule
Submodule.subsingleton_iff
subsingleton_of_bot πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
Bot.bot
instBot
AddSubgroupClass.toAddCommGroup
instAddSubgroupClass
SubmoduleClass.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toAddGroup
instSMulMemClass
instLieRingModuleSubtypeMem
β€”subsingleton_of_bot_eq_top
instAddSubgroupClass
instSMulMemClass
Unique.instSubsingleton
sup_toSubmodule πŸ“–mathematicalβ€”toSubmodule
LieSubmodule
instMax
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”β€”
toSubmodule_comap πŸ“–mathematicalβ€”toSubmodule
comap
Submodule.comap
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LieModuleHom.toLinearMap
β€”β€”
toSubmodule_eq_bot πŸ“–mathematicalβ€”toSubmodule
Bot.bot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
LieSubmodule
instBot
β€”bot_toSubmodule
toSubmodule_eq_top πŸ“–mathematicalβ€”toSubmodule
Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
LieSubmodule
instTop
β€”top_toSubmodule
toSubmodule_inj πŸ“–mathematicalβ€”toSubmoduleβ€”toSubmodule_injective
toSubmodule_injective πŸ“–mathematicalβ€”LieSubmodule
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
toSubmodule
β€”β€”
toSubmodule_le_toSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
toSubmodule
LieSubmodule
instPartialOrder
β€”β€”
toSubmodule_map πŸ“–mathematicalβ€”toSubmodule
map
Submodule.map
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LieModuleHom.toLinearMap
β€”β€”
toSubmodule_mk πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Bracket.bracket
LieRingModule.toBracket
toSubmoduleβ€”β€”
toSubmodule_orderEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
LieSubmodule
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
RelEmbedding.instFunLike
toSubmodule_orderEmbedding
toSubmodule
β€”β€”
top_coe πŸ“–mathematicalβ€”SetLike.coe
LieSubmodule
instSetLike
Top.top
instTop
Set.univ
β€”β€”
top_toSubmodule πŸ“–mathematicalβ€”toSubmodule
Top.top
LieSubmodule
instTop
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”β€”
wellFoundedGT_of_noetherian πŸ“–mathematicalβ€”WellFoundedGT
LieSubmodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”RelHomClass.isWellFounded
RelEmbedding.instRelHomClass
instWellFoundedLTOrderDualOfWellFoundedGT
wellFoundedGT
wellFoundedLT_of_isArtinian πŸ“–mathematicalβ€”WellFoundedLT
LieSubmodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”RelHomClass.isWellFounded
RelEmbedding.instRelHomClass
zero_mem πŸ“–mathematicalβ€”LieSubmodule
SetLike.instMembership
instSetLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lieSubmodule_coe_eq_iff πŸ“–mathematicalβ€”LieSubmodule.toSubmodule
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Bracket.bracket
LieRingModule.toBracket
β€”LieSubmodule.lie_mem

(root)

Definitions

NameCategoryTheorems
LieSubmodule πŸ“–CompData
395 mathmath: LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map, LieSubmodule.coe_smul, LieModule.shiftedGenWeightSpace.shift_apply, LieSubmodule.map_iSup, LieModule.trivial_iff_lower_central_eq_bot, LieModuleHom.mem_range, LieModule.iInf_lowerCentralSeries_eq_posFittingComp, LieSubmodule.coe_map, LieSubmodule.instCanLiftSubmoduleToSubmoduleForallForallForallMemBracket, LieAlgebra.abelian_radical_of_hasTrivialRadical, LieAlgebra.IsSemisimple.isSimple_of_isAtom, LieSubmodule.lie_sup, LieIdeal.comap_incl_eq_top, LieModule.Weight.exists_ne_zero, TensorProduct.LieModule.mapIncl_def, LieSubmodule.map_injective_of_injective, LieModule.lowerCentralSeries_zero, LieSubmodule.Quotient.mk_eq_zero, LieSubmodule.bot_toSubmodule, LieIdeal.restrict_killingForm, LieSubmodule.coe_toSet_mk, LieSubmodule.toSubmodule_le_toSubmodule, LieSubmodule.iSup_toSubmodule, LieSubmodule.mem_comap, LieIdeal.coe_bracket_of_module, LieModule.traceForm_eq_sum_genWeightSpaceOf, LieModule.posFittingComp_le_iInf_lowerCentralSeries, LieSubmodule.lcs_sup, LieModule.traceForm_eq_sum_finrank_nsmul', LieAlgebra.InvariantForm.orthogonal_carrier, LieSubmodule.isCompactElement_lieSpan_singleton, LieModuleHom.ker_eq_bot, LieModule.iSup_genWeightSpaceOf_eq_top, LieSubmodule.bot_lie, LieSubmodule.lie_abelian_iff_lie_self_eq_bot, LieModule.shiftedGenWeightSpace.instSubtypeMemLieSubmodule, LieSubmodule.lcs_add_le_iff, LieIdeal.map_comap_incl, LieModule.disjoint_genWeightSpaceOf, LieSubmodule.coe_sub, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, LieModule.isNilpotent_toEnd_genWeightSpace_zero, LieSubmodule.isNilpotent_iff_exists_lcs_eq_bot, LieIdeal.incl_injective, LieModule.nilpotencyLength_eq_succ_iff, LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap, LieModule.genWeightSpaceChain_def', LieSubmodule.lie_le_iff, LieModule.exists_nontrivial_weightSpace_of_lieIdeal, LieModuleHom.ker_id, LieAlgebra.le_solvable_ideal_solvable, LieModule.trace_toEnd_genWeightSpace, LieSubmodule.map_inf_le, LieSubmodule.mem_inf, LieModule.map_genWeightSpace_le, LieModule.trivial_iff_le_maximal_trivial, LieSubmodule.Quotient.mk'_ker, LieSubmodule.lieIdeal_oper_eq_linear_span', LieModule.shiftedGenWeightSpace.toEnd_eq, LieModule.iSup_genWeightSpace_eq_top', LieSubmodule.mem_mk_iff', LieModule.instIsTrivialSubtypeMemLieSubmoduleMaxTrivSubmodule, LieAlgebra.instNontrivialSubtypeMemLieSubmoduleLieSubalgebraGenWeightSpaceOfNatForall, LieSubmodule.mem_toSubmodule, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.disjoint_toSubmodule, LieModule.instIsTriangularizableSubtypeMemLieSubmodule_1, LieSubmodule.toSubmodule_injective, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LieSubmodule.Quotient.toEnd_comp_mk', LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_lt, LieModule.iSup_ucs_le_genWeightSpace_zero, LieAlgebra.derivedSeries_of_derivedLength_succ, LieSubmodule.traceForm_eq_of_le_idealizer, LieModule.mem_weightSpace, LieSubmodule.incl_apply, LieModule.mem_posFittingCompOf, LieSubmodule.lie_bot, LieSubmodule.isCompl_toSubmodule, LieAlgebra.Extension.toKer_bracket, LieAlgebra.non_trivial_center_of_isNilpotent, LieIdeal.instIsNilpotentSubtypeMemLieSubmoduleOfIsNilpotent, LieSubmodule.mem_iInf, LieSubmodule.toSubmodule_orderEmbedding_apply, LieSubmodule.coe_zero, LieIdeal.comap_bracket_incl_of_le, LieSubmodule.lowerCentralSeries_eq_bot_iff_lcs_eq_bot, LieModuleHom.mem_ker, LieSubmodule.orderIsoMapComap_apply, LieSubmodule.lie_top_eq_of_span_sup_eq_top, LieSubmodule.lie_inf, LieSubmodule.sInf_toSubmodule, LieSubmodule.instSMulMemClass, LieSubmodule.lowerCentralSeries_map_eq_lcs, LieAlgebra.abelian_radical_iff_solvable_is_abelian, LieModule.instIsTriangularizableSubtypeMemLieSubmodule, LieSubmodule.sup_lie, LieSubmodule.map_incl_top, LieSubmodule.subsingleton_of_bot, LieSubmodule.bot_coe, LieSubmodule.iInf_coe, LieModule.mem_genWeightSpace, LieSubmodule.span_univ, LieSubmodule.isNilpotent_iff_exists_self_le_ucs, LieSubmodule.mk_eq_top_iff, LieModule.disjoint_lowerCentralSeries_maxTrivSubmodule_iff, LieSubmodule.comap_incl_eq_top, LieIdeal.incl_coe, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, LieSubmodule.comap_incl_eq_bot, LieSubmodule.ucs_comap_incl, LieModule.nontrivial_max_triv_of_isNilpotent, LieModule.isNilpotent_iff, LieSubmodule.instIsTorsionFreeSubtypeMem, LieSubmodule.range_incl, LieIdeal.incl_isIdealMorphism, LieSubmodule.lieSpan_eq_bot_iff, LieSubmodule.map_incl_lt_iff_lt_top, LieModule.isNilpotent_iff_int, LieSubmodule.span_union, LieModule.genWeightSpace_le_genWeightSpaceOf, LieModule.IsNilpotent.nilpotent, LieModule.lowerCentralSeries_succ, LieModule.finite_genWeightSpaceOf_ne_bot, LieAlgebra.cartan_sup_iSup_rootSpace_eq_top, LieIdeal.lieModule, LieSubmodule.monotone_normalizer, LieModule.map_genWeightSpace_eq_of_injective, LieSubmodule.orderIsoMapComap_symm_apply, LieIdeal.subsingleton_of_bot, LieSubalgebra.mem_toLieSubmodule, LieModule.lowerCentralSeriesLast_le_of_not_isTrivial, LinearMap.BilinForm.lieInvariant_iff, LieSubmodule.Quotient.range_mk', LieSubmodule.trace_eq_trace_restrict_of_le_idealizer, LieSubmodule.subset_lieSpan, LieAlgebra.Extension.ringModuleOf_bracket, LieSubmodule.top_toSubmodule, LieSubmodule.mem_baseChange_iff, LieAlgebra.IsKilling.sl2SubmoduleOfRoot_eq_sup, LieSubmodule.iInf_toSubmodule, LieIdeal.lcs_succ, LieIdeal.isLieAbelian_iff, LieSubmodule.span_iUnion, LieSubmodule.mem_mk_iff, LieSubmodule.trivial_lie_oper_zero, LieSubmodule.mapsTo_pow_toEnd_sub_algebraMap, LieSubmodule.mono_lie_left, LieIdeal.mem_map_of_surjective, LieModule.posFittingCompOf_eq_bot_of_isNilpotent, LieAlgebra.abelian_iff_derived_one_eq_bot, LieIdeal.incl_range, LieModule.exists_nontrivial_weightSpace_of_isNilpotent, LieModuleHom.le_ker_iff_map, LieModule.mem_maxTrivSubmodule, LieModule.existsβ‚‚_genWeightSpace_smul_add_eq_bot, LieModule.genWeightSpace_chainBotCoeff_sub_one_zsmul_sub, LieSubmodule.instIsCompactlyGenerated, LieSubmodule.ker_incl, LieSubmodule.map_inf, LieModule.antitone_lowerCentralSeries, LieSubmodule.instIsArtinianSubtypeMem, LieModule.iInf_lcs_le_of_isNilpotent_quot, LieSubmodule.toEnd_restrict_eq_toEnd, LieIdeal.coe_inclusion, LieSubmodule.mem_bot, LieIdeal.inclusion_injective, LieAlgebra.zero_rootSpace_eq_top_of_nilpotent, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, LieAlgebra.IsKilling.rootSpace_one_div_two_smul, LieModuleHom.coe_range, LieModule.trace_comp_toEnd_genWeightSpace_eq, LieSubmodule.zero_mem, LieModule.instMaxNilpotentSubmoduleIsNilpotent, LieSubmodule.sup_toSubmodule, LieSubmodule.map_comap_le, LieModule.iterate_toEnd_mem_lowerCentralSeriesβ‚‚, LieModuleHom.comp_ker_incl, LieSubmodule.lie_baseChange, LieSubmodule.ucs_eq_top_iff, LieSubmodule.top_lie_le_iff_le_normalizer, LieIdeal.topEquiv_apply, LieModule.maxNilpotentSubmodule_eq_top_of_isNilpotent, LieModule.lowerCentralSeriesLast_le_max_triv, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, LieModule.mem_posFittingComp, LieSubmodule.map_incl_le, LieModule.ideal_oper_maxTrivSubmodule_eq_bot, LieModule.genWeightSpace_chainTopCoeff_add_one_zsmul_add, LieModule.isNilpotent_quotient_iff, LieModule.genWeightSpace_le_genWeightSpaceChain, LieSubmodule.coe_inf, LieSubmodule.eq_top_of_isIrreducible, LieModule.maxTrivEquiv_of_equiv_symm_eq_symm, LieSubmodule.normalizer_inf, LieSubmodule.Quotient.map_mk'_eq_bot_le, LieSubmodule.sSup_toSubmodule, LieModule.shiftedGenWeightSpace.coe_lie_shiftedGenWeightSpace_apply, LieSubmodule.lieSpan_mono, LieSubmodule.lowerCentralSeries_eq_lcs_comap, LieSubmodule.lieSpan_eq, LieModuleHom.range_eq_top, LieModule.isNilpotent_iff_exists_ucs_eq_top, LieModule.traceForm_eq_sum_finrank_nsmul, LieSubmodule.wellFoundedLT_of_isArtinian, LieModule.exists_genWeightSpace_smul_add_eq_bot, LieSubmodule.Quotient.isCentralScalar, LieDerivation.IsKilling.rangeAdOrthogonal_carrier, LieSubmodule.mem_sup, LieModule.finite_genWeightSpace_ne_bot, LieAlgebra.LieIdeal.isNilpotent_iff_le_maxNilpotentIdeal, LieIdeal.derivedSeries_eq_bot_iff, LieSubmodule.sSup_image_lieSpan_singleton, LieIdeal.comap_bracket_incl, LieModule.shiftedGenWeightSpace.instIsNilpotentSubtypeMemLieSubmoduleOfIsNoetherian, LieSubmodule.mem_idealizer, LieModule.isCompl_genWeightSpace_zero_posFittingComp, LieIdeal.killingForm_eq, LieSubmodule.lcs_le_iff, LieSubmodule.Quotient.surjective_mk', LieSubmodule.instIsAtomicOfIsArtinian, LieModule.isNilpotent_of_top_iff', LieModule.genWeightSpaceChain_def, LieSubmodule.ext_iff, LieModule.chainTopCoeff_add_one, LieSubmodule.coe_toEnd, LieAlgebra.InvariantForm.mem_orthogonal, LieSubmodule.Quotient.lieModuleHom_ext_iff, LieSubmodule.sInf_toSubmodule_eq_iInf, LieSubmodule.coe_neg, LieModule.le_max_triv_iff_bracket_eq_bot, LieModule.exists_nontrivial_weightSpace_of_isSolvable, LieSubmodule.coe_bracket, LieAlgebra.maxNilpotentIdeal_eq_top_of_isNilpotent, LieAlgebra.IsSemisimple.non_abelian_of_isAtom, LieAlgebra.abelian_of_le_center, LieSubmodule.wellFoundedGT_of_noetherian, LieModuleEquiv.ofTop_apply, LieModule.isNilpotent_toEnd_sub_algebraMap, LieSubmodule.sSup_toSubmodule_eq_iSup, LieAlgebra.IsKilling.biSup_corootSubmodule_eq_cartan, LieSubmodule.ucs_le_of_normalizer_eq_self, LieIdeal.incl_idealRange, LieModule.eventually_genWeightSpace_smul_add_eq_bot, LieModule.zero_genWeightSpace_eq_top_of_nilpotent, LieSubmodule.inf_lie, LieSubmodule.coe_injective, LieSubmodule.lie_le_right, LieIdeal.comap_incl_self, LieSubmodule.incl_eq_val, LieSubmodule.gc_map_comap, LieSubmodule.instNontrivial, LieModule.weightSpace_le_genWeightSpace, LieModule.iSup_genWeightSpace_eq_top, LieModule.maxTrivEquiv_of_refl_eq_refl, LieSubmodule.Quotient.mk_eq_zero', LieSubalgebra.normalizer_eq_self_iff, LieSubmodule.nontrivial_iff_ne_bot, LieSubmodule.Quotient.mk_bracket, LieSubmodule.mk_eq_bot_iff, LieModule.map_lowerCentralSeries_le, LieModule.coe_lowerCentralSeries_eq_int, LieSubmodule.coe_toSubmodule, LieSubmodule.top_coe, LieSubmodule.nontrivial_iff, LieSubmodule.map_sup, LieAlgebra.radicalIsSolvable, LieModule.isNilpotent_iff_le_maxNilpotentSubmodule, LieModule.traceForm_genWeightSpace_eq, LieModule.instIsNilpotentSup, LieAlgebra.IsKilling.finrank_rootSpace_eq_one, LieIdeal.lcs_zero, LieModule.instIsNilpotentSubtypeMemLieSubmoduleGenWeightSpaceOfNatForallOfIsNoetherian, LieModule.isTrivial_iff_max_triv_eq_top, LieModule.zero_lt_finrank_genWeightSpace, LieModule.zero_genWeightSpace_eq_top_of_nilpotent', LieModule.iSupIndep_genWeightSpace, LieModule.iSup_ucs_eq_genWeightSpace_zero, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, LieSubmodule.codisjoint_toSubmodule, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, LieIdeal.isLieAbelian_of_trivial, LieSubmodule.coe_sInf, LieSubmodule.le_normalizer, LieSubmodule.Quotient.lieQuotientLieModule, LieSubmodule.iSup_toSubmodule_eq_top, LieSubmodule.lieIdeal_oper_eq_linear_span, LieModule.IsNilpotent.nilpotent_int, LieAlgebra.Extension.lie_apply_proj_of_leftInverse_eq, LieAlgebra.mem_corootSpace', LieSubmodule.mem_top, LieModule.posFittingCompOf_le_lowerCentralSeries, LieAlgebra.Extension.ringModuleOf_bracket_proj, LieAlgebra.abelian_derivedAbelianOfIdeal, LieSubmodule.mapOrderEmbedding_apply, LieModule.nontrivial_lowerCentralSeriesLast, LieSubmodule.lieIdeal_oper_eq_span, LieAlgebra.abelian_iff_derived_succ_eq_bot, LieSubmodule.coe_toEnd_pow, LieSubmodule.map_bot, LieSubmodule.add_eq_sup, LieSubmodule.lieSpan_le, LieModule.mem_genWeightSpaceOf, LieAlgebra.IsKilling.coe_invtSubmoduleToLieIdeal_eq_iSup, LieModule.iSupIndep_genWeightSpaceOf, LieModule.traceForm_eq_sum_finrank_nsmul_mul, LieAlgebra.toLieSubmodule_le_rootSpace_zero, LieModule.coe_maxTrivEquiv_apply, LieModule.genWeightSpace_chainTopCoeff_add_one_nsmul_add, LieAlgebra.instIsLieAbelianSubtypeMemLieSubmoduleCenter, instIsLieTowerSubtypeMemLieSubmodule_1, LieSubmodule.instIsNoetherianSubtypeMem, LieSubmodule.map_le_map_iff, LieSubmodule.mem_carrier, LieModule.eventually_iInf_lowerCentralSeries_eq, LieModule.posFittingCompOf_le_posFittingComp, LieSubmodule.lcs_succ, LieAlgebra.Extension.instIsLieAbelianSubtypeLMemLieSubmoduleKerProj, LieAlgebra.IsKilling.rootSpace_two_smul, LieSubmodule.incl_coe, LieSubmodule.map_le_iff_le_comap, LieAlgebra.mem_corootSpace, LieModule.iterate_toEnd_mem_lowerCentralSeries, LieAlgebra.isSolvableAdd, LieSubmodule.toSubmodule_eq_top, LieAlgebra.maxNilpotentIdeal_le_radical, LieAlgebra.maxNilpotentIdealIsNilpotent, LieModule.coe_maxTrivHom_apply, LieIdeal.coe_lcs_eq, LieSubmodule.gc_lcs_ucs, LieSubmodule.mem_lieSpan, LieSubmodule.instAddSubgroupClass, LieSubmodule.map_le_range, LieModule.iInf_lowerCentralSeries_eq_bot_of_isNilpotent, LieModule.map_posFittingComp_le, LieSubmodule.instLieModule, LieSubmodule.toSubmodule_eq_bot, LieModule.iSupIndep_genWeightSpace', LieAlgebra.derivedLength_eq_derivedLengthOfIdeal, LieSubmodule.Quotient.isNoetherian, LieSubmodule.lcs_le_self, instIsLieTowerSubtypeMemLieSubmodule, LieSubmodule.subsingleton_iff, LieAlgebra.Extension.twoCocycleOf_coe_coe, LieSubmodule.map_bracket_eq, LieSubmodule.Quotient.mk'_apply, LieSubmodule.comap_inf, LieSubmodule.injective_incl, LieSubmodule.le_comap_map, LieAlgebra.isSolvableBot, LieSubmodule.map_comap_incl, LieDerivation.maxTrivSubmodule_eq_bot_of_center_eq_bot, LieAlgebra.IsKilling.exists_isSl2Triple_of_weight_isNonZero, LieModule.shiftedGenWeightSpace.shift_symm_apply, LieSubmodule.iSupIndep_toSubmodule, LieModule.injOn_genWeightSpace, LieAlgebra.LieIdeal.solvable_iff_le_radical, LieIdeal.incl_apply, LieSubmodule.baseChange_top, LieModule.posFittingComp_eq_bot_of_isNilpotent, Function.instIsSolvableSubtypeMemLieSubmodule, LieSubmodule.coe_iInf, LieSubmodule.ucs_bot_one, LieSubmodule.mem_normalizer, LieModuleHom.map_top, LieAlgebra.Extension.lie_toKer_apply, LieSubmodule.span_empty, LieSubmodule.lie_eq_bot_iff, LieModule.genWeightSpace_neg_add_chainBot, LieSubmodule.comap_incl_self, LieAlgebra.rootSpaceProduct_tmul, LieSubmodule.eq_bot_iff, LieSubmodule.coe_add, LieIdeal.ker_incl, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, LieSubmodule.normalizer_bot_eq_maxTrivSubmodule, LieModule.genWeightSpace_add_chainTop, LieSubmodule.instIsModularLattice, LieIdeal.comap_incl_eq_bot, LieIdeal.inclusion_apply, LieSubmodule.mem_map, LieSubmodule.lie_coe_mem_lie, LieModule.coe_lowerCentralSeries_ideal_le, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, LieSubmodule.sInf_coe, LieAlgebra.isExtension_of_surjective, LieSubmodule.inf_toSubmodule, LieModuleEquiv.range_coe, LieModule.genWeightSpace_genWeightSpaceOf_map_incl, LieSubmodule.gc_top_lie_normalizer, LieSubmodule.mem_coe, LieSubmodule.inf_coe, LieModule.disjoint_genWeightSpace, LieModule.isCompl_genWeightSpaceOf_zero_posFittingCompOf, LieSubmodule.baseChange_bot

---

← Back to Index