Documentation Verification Report

LinearRecurrence

πŸ“ Source: Mathlib/Algebra/LinearRecurrence.lean

Statistics

MetricCount
DefinitionsLinearRecurrence, IsSolution, charPoly, coeffs, mkSol, solSpace, toInit, tupleSucc, instInhabitedLinearRecurrence
9
TheoremscharPoly_degree_eq_order, charPoly_monic, eq_mk_of_is_sol_of_eq_init, eq_mk_of_is_sol_of_eq_init', geom_sol_iff_root_charPoly, is_sol_iff_mem_solSpace, is_sol_mkSol, mkSol_eq_init, solSpace_rank, sol_eq_of_eq_init
10
Total19

LinearRecurrence

Definitions

NameCategoryTheorems
IsSolution πŸ“–MathDef
8 mathmath: Real.geom_goldenRatio_isSol_fibRec, geom_gold_isSol_fibRec, Real.geom_goldConj_isSol_fibRec, Real.fib_isSol_fibRec, geom_sol_iff_root_charPoly, is_sol_mkSol, is_sol_iff_mem_solSpace, Real.geom_goldenConj_isSol_fibRec
charPoly πŸ“–CompOp
4 mathmath: Real.fibRec_charPoly_eq, charPoly_monic, charPoly_degree_eq_order, geom_sol_iff_root_charPoly
coeffs πŸ“–CompOpβ€”
mkSol πŸ“–CompOp
4 mathmath: eq_mk_of_is_sol_of_eq_init', eq_mk_of_is_sol_of_eq_init, mkSol_eq_init, is_sol_mkSol
solSpace πŸ“–CompOp
2 mathmath: solSpace_rank, is_sol_iff_mem_solSpace
toInit πŸ“–CompOpβ€”
tupleSucc πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
charPoly_degree_eq_order πŸ“–mathematicalβ€”Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
charPoly
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
order
β€”charPoly.eq_1
Polynomial.degree_sub_eq_left_of_degree_lt
Polynomial.degree_monomial
one_ne_zero
NeZero.one
Finset.sum_congr
Polynomial.degree_sum_fin_lt
charPoly_monic πŸ“–mathematicalβ€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
charPoly
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Polynomial.Monic.eq_1
Polynomial.leadingCoeff.eq_1
Polynomial.natDegree_eq_of_degree_eq_some
charPoly_degree_eq_order
charPoly.eq_1
Polynomial.coeff_sub
Polynomial.coeff_monomial_same
Polynomial.finset_sum_coeff
sub_eq_self
Finset.sum_eq_zero
Polynomial.coeff_eq_zero_of_degree_lt
lt_imp_lt_of_le_of_le
Polynomial.degree_monomial_le
le_refl
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
eq_mk_of_is_sol_of_eq_init πŸ“–mathematicalIsSolution
order
mkSolβ€”mkSol.eq_1
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
le_of_not_gt
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
eq_mk_of_is_sol_of_eq_init' πŸ“–mathematicalIsSolution
order
mkSolβ€”eq_mk_of_is_sol_of_eq_init
geom_sol_iff_root_charPoly πŸ“–mathematicalβ€”IsSolution
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Polynomial.IsRoot
charPoly
β€”charPoly.eq_1
Polynomial.IsRoot.def
Polynomial.eval.eq_1
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_monomial
one_mul
Polynomial.evalβ‚‚_finset_sum
Finset.sum_congr
zero_add
pow_add
sub_eq_zero
Finset.mul_sum
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
is_sol_iff_mem_solSpace πŸ“–mathematicalβ€”IsSolution
Submodule
CommSemiring.toSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
solSpace
β€”β€”
is_sol_mkSol πŸ“–mathematicalβ€”IsSolution
mkSol
β€”mkSol.eq_1
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Finset.sum_congr
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
mkSol_eq_init πŸ“–mathematicalβ€”mkSol
order
β€”mkSol.eq_1
Finset.sum_congr
solSpace_rank πŸ“–mathematicalβ€”Module.rank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
solSpace
Submodule.addCommMonoid
Submodule.module
Cardinal
Cardinal.instNatCast
order
β€”LinearEquiv.rank_eq
rank_fin_fun
sol_eq_of_eq_init πŸ“–mathematicalIsSolutionSet.EqOn
SetLike.coe
Finset
Finset.instSetLike
Finset.range
order
β€”RingHomInvPair.ids
Equiv.apply_eq_iff_eq
LinearEquiv.coe_toEquiv
Finset.mem_range

(root)

Definitions

NameCategoryTheorems
LinearRecurrence πŸ“–CompDataβ€”
instInhabitedLinearRecurrence πŸ“–CompOpβ€”

---

← Back to Index