Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Module/Congruence/Defs.lean

Statistics

MetricCount
DefinitionsModuleCon, instAddCommGroupQuotient, instAddCommMagmaQuotient, instAddCommMonoidQuotient, instAddCommSemigroupQuotient, instAddGroupQuotient, instAddMonoidQuotient, instAddQuotient, instAddSemigroupQuotient, instAddZeroClassQuotient, instDistribMulActionQuotient, instDistribSMulQuotient, instModuleQuotient, instMulActionQuotient, instSMulQuotient, instSMulWithZeroQuotient, instSMulZeroClassQuotient, instZeroQuotient, ker, quotientKerEquivOfSurjective, toAddCon, toSMulCon, SMulCon, addConGen, addConGen', instMulActionQuotient, instSMulQuotient, instSMulWithZeroQuotient, instSMulZeroClassQuotient, instZeroQuotient, ker, toSetoid, VAddCon, instAddActionQuotient, instVAddQuotient, ker, toSetoid
37
Theoremssmul, smul, vadd
3
Total40

ModuleCon

Definitions

NameCategoryTheorems
instAddCommGroupQuotient πŸ“–CompOpβ€”
instAddCommMagmaQuotient πŸ“–CompOpβ€”
instAddCommMonoidQuotient πŸ“–CompOp
1 mathmath: instInvertibleReprβ‚›
instAddCommSemigroupQuotient πŸ“–CompOpβ€”
instAddGroupQuotient πŸ“–CompOpβ€”
instAddMonoidQuotient πŸ“–CompOpβ€”
instAddQuotient πŸ“–CompOpβ€”
instAddSemigroupQuotient πŸ“–CompOpβ€”
instAddZeroClassQuotient πŸ“–CompOpβ€”
instDistribMulActionQuotient πŸ“–CompOpβ€”
instDistribSMulQuotient πŸ“–CompOpβ€”
instModuleQuotient πŸ“–CompOp
1 mathmath: instInvertibleReprβ‚›
instMulActionQuotient πŸ“–CompOpβ€”
instSMulQuotient πŸ“–CompOpβ€”
instSMulWithZeroQuotient πŸ“–CompOpβ€”
instSMulZeroClassQuotient πŸ“–CompOpβ€”
instZeroQuotient πŸ“–CompOpβ€”
ker πŸ“–CompOpβ€”
quotientKerEquivOfSurjective πŸ“–CompOpβ€”
toAddCon πŸ“–CompOp
1 mathmath: Module.DirectLimit.quotMk_of
toSMulCon πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”AddCon.toSetoid
toAddCon
β€”β€”β€”

SMulCon

Definitions

NameCategoryTheorems
addConGen πŸ“–CompOpβ€”
addConGen' πŸ“–CompOpβ€”
instMulActionQuotient πŸ“–CompOpβ€”
instSMulQuotient πŸ“–CompOpβ€”
instSMulWithZeroQuotient πŸ“–CompOpβ€”
instSMulZeroClassQuotient πŸ“–CompOpβ€”
instZeroQuotient πŸ“–CompOpβ€”
ker πŸ“–CompOpβ€”
toSetoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”toSetoidβ€”β€”β€”

VAddCon

Definitions

NameCategoryTheorems
instAddActionQuotient πŸ“–CompOpβ€”
instVAddQuotient πŸ“–CompOpβ€”
ker πŸ“–CompOpβ€”
toSetoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
vadd πŸ“–mathematicaltoSetoidHVAdd.hVAdd
instHVAdd
β€”β€”

(root)

Definitions

NameCategoryTheorems
ModuleCon πŸ“–CompDataβ€”
SMulCon πŸ“–CompDataβ€”
VAddCon πŸ“–CompDataβ€”

---

← Back to Index