Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Module/Equiv/Basic.lean

Statistics

MetricCount
DefinitionstoIntLinearEquiv, toLinearEquiv, toNatLinearEquiv, toLinearEquiv, toModuleAut, toLinearEquiv, applyDistribMulAction, arrowCongr, arrowCongrAddEquiv, automorphismGroup, toLinearMapMonoidHom, congrLeft, congrRight, conj, conjRingEquiv, curry, domMulActCongrRight, funCongrLeft, instUnique, instZero, neg, ofLinear, ofSubsingleton, piUnique, restrictScalars, smulOfNeZero, smulOfUnit, sumPiEquivProdPi, uniqueOfSubsingleton, funLeft, ringLmapEquivSelf, toLinearEquiv, addMonoidEndRingEquivInt, addMonoidHomLequivInt, addMonoidHomLequivNat
35
Theoremscoe_symm_toIntLinearEquiv, coe_symm_toNatLinearEquiv, coe_toIntLinearEquiv, coe_toLinearEquiv, coe_toLinearEquiv_symm, coe_toNatLinearEquiv, toIntLinearEquiv_refl, toIntLinearEquiv_symm, toIntLinearEquiv_toAddEquiv, toIntLinearEquiv_trans, toNatLinearEquiv_refl, toNatLinearEquiv_symm, toNatLinearEquiv_toAddEquiv, toNatLinearEquiv_trans, toLinearEquiv_apply, toLinearEquiv_symm_apply, toModuleAut_apply, apply_faithfulSMul, apply_smulCommClass, apply_smulCommClass', arrowCongrAddEquiv_apply, arrowCongrAddEquiv_symm_apply, arrowCongr_apply, arrowCongr_comp, arrowCongr_symm_apply, arrowCongr_trans, toLinearMapMonoidHom_apply, coe_curry, coe_curry_symm, coe_inv, coe_neg, coe_one, coe_pow, coe_toLinearMap_mul, coe_toLinearMap_one, coe_zero, congrLeft_apply, congrLeft_symm_apply, conjRingEquiv_apply_apply, conjRingEquiv_symm_apply_apply, conj_apply, conj_apply_apply, conj_comp, conj_conj_symm, conj_id, conj_refl, conj_symm_conj, conj_trans, domMulActCongrRight_apply, domMulActCongrRight_symm_apply, funCongrLeft_apply, funCongrLeft_comp, funCongrLeft_id, funCongrLeft_symm, mul_apply, mul_eq_trans, neg_apply, ofLinear_apply, ofLinear_symm_apply, ofLinear_symm_toLinearMap, ofLinear_toLinearMap, ofSubsingleton_apply, ofSubsingleton_self, ofSubsingleton_symm_apply, one_eq_refl, piUnique_apply, piUnique_symm_apply, pow_apply, restrictScalars_apply, restrictScalars_inj, restrictScalars_injective, restrictScalars_symm_apply, smulOfNeZero_apply, smulOfNeZero_symm_apply, smul_def, smul_refl, sumPiEquivProdPi_apply, sumPiEquivProdPi_symm_apply, symm_conj_apply, symm_neg, toAddEquiv_toIntLinearEquiv, toAddEquiv_toNatLinearEquiv, zero_apply, zero_symm, funLeft_apply, funLeft_comp, funLeft_id, funLeft_injective_of_surjective, funLeft_surjective_of_injective, ringLmapEquivSelf_apply, ringLmapEquivSelf_symm_apply, isUnit_iff, toLinearEquiv_apply, toLinearEquiv_symm_apply, addMonoidEndRingEquivInt_apply, addMonoidEndRingEquivInt_symm_apply, addMonoidHomLequivInt_apply, addMonoidHomLequivInt_symm_apply, addMonoidHomLequivNat_apply, addMonoidHomLequivNat_symm_apply
100
Total135

AddEquiv

Definitions

NameCategoryTheorems
toIntLinearEquiv πŸ“–CompOp
7 mathmath: toIntLinearEquiv_toAddEquiv, toIntLinearEquiv_refl, toIntLinearEquiv_trans, toIntLinearEquiv_symm, coe_toIntLinearEquiv, LinearEquiv.toAddEquiv_toIntLinearEquiv, coe_symm_toIntLinearEquiv
toLinearEquiv πŸ“–CompOp
2 mathmath: coe_toLinearEquiv_symm, coe_toLinearEquiv
toNatLinearEquiv πŸ“–CompOp
7 mathmath: toNatLinearEquiv_toAddEquiv, toNatLinearEquiv_trans, toNatLinearEquiv_refl, coe_symm_toNatLinearEquiv, coe_toNatLinearEquiv, LinearEquiv.toAddEquiv_toNatLinearEquiv, toNatLinearEquiv_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_symm_toIntLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
toIntLinearEquiv
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instEquivLike
symm
β€”RingHomInvPair.ids
coe_symm_toNatLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Nat.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
Nat.instNonAssocSemiring
RingHomInvPair.ids
AddCommMonoid.toNatModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
toNatLinearEquiv
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instEquivLike
symm
β€”RingHomInvPair.ids
coe_toIntLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
toIntLinearEquiv
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instEquivLike
β€”RingHomInvPair.ids
coe_toLinearEquiv πŸ“–mathematicalDFunLike.coe
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
instEquivLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearEquiv.instEquivLike
toLinearEquiv
β€”RingHomInvPair.ids
coe_toLinearEquiv_symm πŸ“–mathematicalDFunLike.coe
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
instEquivLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearEquiv.instEquivLike
LinearEquiv.symm
toLinearEquiv
symm
β€”RingHomInvPair.ids
coe_toNatLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Nat.instSemiring
RingHom.id
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommMonoid.toNatModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
toNatLinearEquiv
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instEquivLike
β€”RingHomInvPair.ids
toIntLinearEquiv_refl πŸ“–mathematicalβ€”toIntLinearEquiv
refl
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearEquiv.refl
Int.instSemiring
β€”RingHomInvPair.ids
toIntLinearEquiv_symm πŸ“–mathematicalβ€”toIntLinearEquiv
symm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearEquiv.symm
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
toIntLinearEquiv_toAddEquiv πŸ“–mathematicalβ€”AddEquivClass.toAddEquiv
LinearEquiv
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.instEquivLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
toIntLinearEquiv
β€”ext
RingHomInvPair.ids
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
toIntLinearEquiv_trans πŸ“–mathematicalβ€”toIntLinearEquiv
trans
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearEquiv.trans
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
β€”RingHomInvPair.ids
toNatLinearEquiv_refl πŸ“–mathematicalβ€”toNatLinearEquiv
refl
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearEquiv.refl
Nat.instSemiring
AddCommMonoid.toNatModule
β€”RingHomInvPair.ids
toNatLinearEquiv_symm πŸ“–mathematicalβ€”toNatLinearEquiv
symm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearEquiv.symm
Nat.instSemiring
AddCommMonoid.toNatModule
RingHom.id
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
toNatLinearEquiv_toAddEquiv πŸ“–mathematicalβ€”AddEquivClass.toAddEquiv
LinearEquiv
Nat.instSemiring
RingHom.id
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommMonoid.toNatModule
LinearEquiv.instEquivLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
toNatLinearEquiv
β€”RingHomInvPair.ids
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
toNatLinearEquiv_trans πŸ“–mathematicalβ€”toNatLinearEquiv
trans
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearEquiv.trans
Nat.instSemiring
AddCommMonoid.toNatModule
RingHom.id
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
β€”RingHomInvPair.ids

DistribMulAction

Definitions

NameCategoryTheorems
toLinearEquiv πŸ“–CompOp
7 mathmath: toModuleAut_apply, toLinearEquiv_symm_apply, Module.Basis.repr_smul, toLinearEquiv_apply, AffineBasis.coord_smul, ContinuousLinearEquiv.smulLeft_apply_toLinearEquiv, LinearEquiv.smul_refl
toModuleAut πŸ“–CompOp
1 mathmath: toModuleAut_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
toLinearEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”RingHomInvPair.ids
toLinearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
toLinearEquiv
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
toMulAction
AddCommMonoid.toAddMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”RingHomInvPair.ids
toModuleAut_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toModuleAut
toLinearEquiv
β€”RingHomInvPair.ids

Equiv

Definitions

NameCategoryTheorems
toLinearEquiv πŸ“–CompOpβ€”

LinearEquiv

Definitions

NameCategoryTheorems
applyDistribMulAction πŸ“–CompOp
8 mathmath: RootPairing.mem_range_root_of_mem_range_reflection_of_mem_range_root, Module.Ray.linearEquiv_smul_eq_map, RootPairing.mem_range_coroot_of_mem_range_coreflection_of_mem_range_coroot, apply_smulCommClass, Module.Basis.smul_eq_map, apply_smulCommClass', smul_def, apply_faithfulSMul
arrowCongr πŸ“–CompOp
13 mathmath: LinearMap.Nondegenerate.congr, ModuleCat.Iso.homCongr_eq_arrowCongr, SemimoduleCat.Iso.homCongr_eq_arrowCongr, LinearMap.separatingRight_congr_iff, arrowCongr_symm_apply, LinearMap.IntrinsicStar.starLinearEquiv_eq_arrowCongr, LinearMap.SeparatingRight.congr, arrowCongr_apply, LinearMap.nondegenerate_congr_iff, LinearMap.separatingLeft_congr_iff, arrowCongr_trans, arrowCongr_comp, LinearMap.SeparatingLeft.congr
arrowCongrAddEquiv πŸ“–CompOp
6 mathmath: domMulActCongrRight_symm_apply, domMulActCongrRight_apply, congrLeft_symm_apply, congrLeft_apply, arrowCongrAddEquiv_apply, arrowCongrAddEquiv_symm_apply
automorphismGroup πŸ“–CompOp
129 mathmath: DistribMulAction.toModuleAut_apply, lTensor_pow, Complex.linearEquiv_det_conjLIE, Orientation.linearEquiv_det_rotation, transvection.det_eq_one, det_trans, ZLattice.covolume_eq_det_inv, SpecialLinearGroup.coe_zpow, SpecialLinearGroup.toLinearEquiv_symm_to_linearMap, SpecialLinearGroup.mem_center_iff_spec, SpecialLinearGroup.mem_center_iff, RootPairing.range_weylGroup_coweightHom, coe_inv, SpecialLinearGroup.coe_one, dilatransvections_pow_mono, rTensor_mul, LinearMap.GeneralLinearGroup.generalLinearEquiv_to_linearMap, Module.reflection_inv, SpecialLinearGroup.mem_range_toGeneralLinearGroup_iff, RootPairing.Equiv.weightHom_toLinearMap, one_mem_transvections, det_baseChange, coe_toLinearMap_mul, TensorProduct.congr_zpow, Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap, RootPairing.mem_range_root_of_mem_range_reflection_of_mem_range_root, mul_eq_trans, lTensor_zpow, ModularGroup.lcRow0Extend_symm_apply, AffineEquiv.linear_equivUnitsAffineMap_symm_apply, RootPairing.coreflection_inv, rTensor_zpow, Module.Ray.linearEquiv_smul_eq_map, isOfFinOrder_of_finite_of_span_eq_top_of_mapsTo, Module.reflection_mul_reflection_pow_apply, RootPairing.Equiv.coweightHom_injective, LinearMap.GeneralLinearGroup.ofLinearEquiv_inv, coe_pow, RootPairing.mem_range_coroot_of_mem_range_coreflection_of_mem_range_coroot, SpecialLinearGroup.coe_inv, mul_apply, RootPairing.reflection_sq, SpecialLinearGroup.congr_linearEquiv_coe_apply, SpecialLinearGroup.det_eq_one, ModularGroup.lcRow0Extend_apply, LinearMap.GeneralLinearGroup.toLinearEquiv_inv, Submodule.linearEquiv_det_reflection, rTensor_pow, TensorProduct.AlgebraTensorModule.congr_mul, baseChange_mul, Orientation.map_eq_det_inv_smul, Module.reflection_mul_reflection_pow, RootPairing.Equiv.weightEquiv_mul, det_symm, SpecialLinearGroup.centerEquivRootsOfUnity_symm_apply, SpecialLinearGroup.det_coe, RootPairing.Equiv.weightEquiv_inv, RootPairing.Equiv.coweightEquiv_mul, apply_smulCommClass, RootPairing.Equiv.coweightEquiv_inv, baseChange_zpow, SpecialLinearGroup.coe_mul, transvections_pow_mono, det_conj, RootPairing.Equiv.weightHom_apply, SpecialLinearGroup.coe_pow, Matrix.SpecialLinearGroup.toLin_equiv.symm_toLinearMap_eq, AffineEquiv.linearHom_apply, Module.reflection_mul_reflection_pow_apply_self, Complex.linearEquiv_det_conjAe, Module.Basis.smul_eq_map, SpecialLinearGroup.centerEquivRootsOfUnity_apply, one_mem_dilatransvections, SpecialLinearGroup.toLinearEquiv_symm_apply, apply_smulCommClass', RootPairing.coreflection_sq, baseChange_inv, RootPairing.Equiv.coweightHom_op, linearEquiv_det_rotation, Matrix.SpecialLinearGroup.toLin'_to_linearMap, TensorProduct.congr_mul, Module.Basis.map_orientation_eq_det_inv_smul, inv_mem_dilatransvections_iff, Module.reflection_mul_reflection_zpow_apply_self, RootPairing.Equiv.weightHom_injective, TensorProduct.AlgebraTensorModule.congr_one, Module.reflection_mul_reflection_zpow_apply, Polynomial.det_taylorLinearEquiv, smul_def, Matrix.SpecialLinearGroup.toLin_equiv.toLinearMap_eq, SpecialLinearGroup.toGeneralLinearGroup_toLinearEquiv_apply, RootPairing.reflection_inv, coe_inv_det, LinearMap.GeneralLinearGroup.toLinearEquiv_mul, transvection.inv_eq', Matrix.SpecialLinearGroup.toLin'_injective, SpecialLinearGroup.coe_toGeneralLinearGroup_apply, baseChange_pow, coe_one, LinearMap.GeneralLinearGroup.ofLinearEquiv_mul, TensorProduct.congr_pow, pow_apply, Matrix.SpecialLinearGroup.toLin'_symm_apply, automorphismGroup.toLinearMapMonoidHom_apply, one_eq_refl, inv_mem_transvections_iff, RootPairing.range_weylGroup_weightHom, baseChange_one, det_refl, SpecialLinearGroup.baseChange_apply_coe, RootPairing.isOrthogonal_comm, RootPairing.Equiv.coweightHom_toLinearMap, SpecialLinearGroup.coe_div, LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv, SpecialLinearGroup.toLinearEquiv_injective, RootPairing.Equiv.coweightHom_apply, RootPairing.reflection_reflectionPerm, SpecialLinearGroup.coe_dualMap, transvection.inv_eq, Module.reflection_mul_reflection_mul_reflection_pow_apply_self, Module.reflection_mul_reflection_mul_reflection_zpow_apply_self, coe_toLinearMap_one, Module.reflection_mul_reflection_zpow, lTensor_mul, SpecialLinearGroup.toLinearEquiv_to_linearMap, Matrix.SpecialLinearGroup.toLin'_apply, coe_det, apply_faithfulSMul, SpecialLinearGroup.toLinearEquiv_apply
congrLeft πŸ“–CompOp
2 mathmath: congrLeft_symm_apply, congrLeft_apply
congrRight πŸ“–CompOp
1 mathmath: Module.Invertible.rTensorEquiv_symm_apply_apply
conj πŸ“–CompOp
28 mathmath: conj_trans, conj_apply_apply, map_mem_invtSubmodule_conj_iff, AlgEquiv.linearEquivConj_mulLeft, LieModule.shiftedGenWeightSpace.toEnd_eq, conj_comp, conj_refl, LinearMap.IsProj.eq_conj_prodMap, conj_apply, conj_symm_conj, lieConj_apply, LinearMap.isPairSelfAdjoint_equiv, FGModuleCat.Iso.conj_eq_conj, LieAlgebra.conj_ad_apply, AlgEquiv.linearEquivConj_mulLeftRight, symm_conj_apply, conj_conj_symm, SemimoduleCat.Iso.conj_eq_conj, LinearMap.trace_conj', conj_id, RootPairing.toPerfPair_conj_reflection, charpoly_conj, AlgEquiv.linearEquivConj_mulRight, ModuleCat.Iso.conj_eq_conj, RootPairing.toPerfPair_flip_conj_coreflection, FDRep.Iso.conj_ρ, map_mem_invtSubmodule_iff, FGModuleCat.Iso.conj_hom_eq_conj
conjRingEquiv πŸ“–CompOp
2 mathmath: conjRingEquiv_apply_apply, conjRingEquiv_symm_apply_apply
curry πŸ“–CompOp
2 mathmath: coe_curry, coe_curry_symm
domMulActCongrRight πŸ“–CompOp
2 mathmath: domMulActCongrRight_symm_apply, domMulActCongrRight_apply
funCongrLeft πŸ“–CompOp
6 mathmath: funCongrLeft_apply, Matrix.toLin'_reindex, funCongrLeft_id, Matrix.mulVecLin_reindex, funCongrLeft_comp, funCongrLeft_symm
instUnique πŸ“–CompOpβ€”
instZero πŸ“–CompOp
3 mathmath: zero_symm, zero_apply, coe_zero
neg πŸ“–CompOp
3 mathmath: coe_neg, symm_neg, neg_apply
ofLinear πŸ“–CompOp
4 mathmath: ofLinear_toLinearMap, ofLinear_symm_apply, ofLinear_symm_toLinearMap, ofLinear_apply
ofSubsingleton πŸ“–CompOp
3 mathmath: ofSubsingleton_apply, ofSubsingleton_self, ofSubsingleton_symm_apply
piUnique πŸ“–CompOp
2 mathmath: piUnique_symm_apply, piUnique_apply
restrictScalars πŸ“–CompOp
8 mathmath: extendScalarsOfIsLocalizationEquiv_symm_apply, restrictScalars_apply, restrictScalars_symm_apply, ZSpan.map, restrictScalars_injective, TensorProduct.directSumRight'_restrict, restrictScalars_inj, Module.Basis.mapCoeffs_repr
smulOfNeZero πŸ“–CompOp
2 mathmath: smulOfNeZero_apply, smulOfNeZero_symm_apply
smulOfUnit πŸ“–CompOpβ€”
sumPiEquivProdPi πŸ“–CompOp
2 mathmath: sumPiEquivProdPi_apply, sumPiEquivProdPi_symm_apply
uniqueOfSubsingleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_faithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
applyDistribMulAction
β€”RingHomInvPair.ids
ext
apply_smulCommClass πŸ“–mathematicalβ€”SMulCommClass
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
applyDistribMulAction
β€”RingHomInvPair.ids
LinearMap.map_smul_of_tower
LinearMap.IsScalarTower.compatibleSMul
apply_smulCommClass' πŸ“–mathematicalβ€”SMulCommClass
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
applyDistribMulAction
β€”SMulCommClass.symm
RingHomInvPair.ids
apply_smulCommClass
arrowCongrAddEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
LinearMap
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
arrowCongrAddEquiv
LinearMap.comp
toLinearMap
symm
β€”β€”
arrowCongrAddEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
LinearMap
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
arrowCongrAddEquiv
LinearMap.comp
toLinearMap
symm
β€”β€”
arrowCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearEquiv
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
arrowCongr
symm
β€”smulCommClass_self
arrowCongr_comp πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
arrowCongr
LinearMap.comp
β€”LinearMap.ext
smulCommClass_self
symm_apply_apply
arrowCongr_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearEquiv
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
symm
arrowCongr
β€”smulCommClass_self
arrowCongr_trans πŸ“–mathematicalβ€”trans
LinearMap
CommSemiring.toSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
arrowCongr
β€”smulCommClass_self
coe_curry πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
instEquivLike
curry
β€”RingHomInvPair.ids
coe_curry_symm πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
instEquivLike
symm
curry
β€”RingHomInvPair.ids
coe_inv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
automorphismGroup
symm
β€”RingHomInvPair.ids
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
neg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomInvPair.ids
coe_one πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
automorphismGroup
β€”RingHomInvPair.ids
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
Nat.iterate
β€”RingHomInvPair.ids
hom_coe_pow
coe_toLinearMap_mul πŸ“–mathematicalβ€”toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
LinearMap
Module.End.instMul
β€”RingHomInvPair.ids
coe_toLinearMap_one πŸ“–mathematicalβ€”toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearEquiv
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
automorphismGroup
LinearMap.id
β€”RingHomInvPair.ids
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
EquivLike.toFunLike
instEquivLike
instZero
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
congrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.module
EquivLike.toFunLike
instEquivLike
congrLeft
Equiv.toFun
AddEquiv.toEquiv
LinearMap.instAdd
arrowCongrAddEquiv
refl
β€”RingHomInvPair.ids
congrLeft_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.module
EquivLike.toFunLike
instEquivLike
symm
congrLeft
Equiv.invFun
AddEquiv.toEquiv
LinearMap.instAdd
arrowCongrAddEquiv
refl
β€”RingHomInvPair.ids
conjRingEquiv_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
RingEquiv
Module.End
Module.End.instMul
LinearMap.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
conjRingEquiv
LinearEquiv
instEquivLike
symm
β€”β€”
conjRingEquiv_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
RingEquiv
Module.End
Module.End.instMul
LinearMap.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
conjRingEquiv
LinearEquiv
instEquivLike
symm
β€”β€”
conj_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
LinearMap.comp
RingHomInvPair.triplesβ‚‚
RingHomCompTriple.ids
toLinearMap
symm
β€”smulCommClass_self
conj_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.End
CommSemiring.toSemiring
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearEquiv
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
symm
β€”smulCommClass_self
conj_comp πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
LinearMap.comp
RingHomCompTriple.ids
β€”arrowCongr_comp
RingHomCompTriple.ids
RingHomInvPair.triplesβ‚‚
conj_conj_symm πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
symm
β€”LinearMap.ext
smulCommClass_self
apply_symm_apply
conj_id πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
LinearMap.id
β€”LinearMap.ext
smulCommClass_self
apply_symm_apply
conj_refl πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.End
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
refl
β€”RingHomInvPair.ids
smulCommClass_self
conj_symm_conj πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
symm
β€”LinearMap.ext
smulCommClass_self
symm_apply_apply
conj_trans πŸ“–mathematicalβ€”trans
Module.End
CommSemiring.toSemiring
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
conj
β€”smulCommClass_self
domMulActCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DomMulAct
DomMulAct.instSemiringOfMulOpposite
MulOpposite.instSemiring
RingHom.id
DomMulAct.instNonAssocSemiringOfMulOpposite
MulOpposite.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.instModuleDomMulActOfSMulCommClass
EquivLike.toFunLike
instEquivLike
domMulActCongrRight
Equiv.toFun
AddEquiv.toEquiv
LinearMap.instAdd
arrowCongrAddEquiv
RingHomCompTriple.ids
refl
β€”RingHomInvPair.ids
domMulActCongrRight_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DomMulAct
DomMulAct.instSemiringOfMulOpposite
MulOpposite.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
DomMulAct.instNonAssocSemiringOfMulOpposite
MulOpposite.instNonAssocSemiring
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.instModuleDomMulActOfSMulCommClass
EquivLike.toFunLike
instEquivLike
symm
domMulActCongrRight
Equiv.invFun
AddEquiv.toEquiv
LinearMap.instAdd
arrowCongrAddEquiv
RingHomCompTriple.ids
refl
β€”RingHomInvPair.ids
funCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
instEquivLike
funCongrLeft
LinearMap
LinearMap.instFunLike
LinearMap.funLeft
Equiv
Equiv.instEquivLike
β€”RingHomInvPair.ids
funCongrLeft_comp πŸ“–mathematicalβ€”funCongrLeft
Equiv.trans
trans
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
β€”RingHomInvPair.ids
funCongrLeft_id πŸ“–mathematicalβ€”funCongrLeft
Equiv.refl
refl
Pi.addCommMonoid
Pi.Function.module
β€”RingHomInvPair.ids
funCongrLeft_symm πŸ“–mathematicalβ€”symm
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
funCongrLeft
Equiv.symm
β€”RingHomInvPair.ids
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
β€”RingHomInvPair.ids
mul_eq_trans πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
trans
RingHomCompTriple.ids
β€”RingHomInvPair.ids
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
ofLinear_apply πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.triplesβ‚‚
LinearMap.id
DFunLike.coe
LinearEquiv
EquivLike.toFunLike
instEquivLike
ofLinear
LinearMap
LinearMap.instFunLike
β€”RingHomInvPair.triplesβ‚‚
ofLinear_symm_apply πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.triplesβ‚‚
LinearMap.id
DFunLike.coe
LinearEquiv
EquivLike.toFunLike
instEquivLike
symm
ofLinear
LinearMap
LinearMap.instFunLike
β€”RingHomInvPair.triplesβ‚‚
ofLinear_symm_toLinearMap πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.triplesβ‚‚
LinearMap.id
toLinearMap
symm
ofLinear
β€”RingHomInvPair.triplesβ‚‚
ofLinear_toLinearMap πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.triplesβ‚‚
LinearMap.id
toLinearMap
ofLinear
β€”RingHomInvPair.triplesβ‚‚
ofSubsingleton_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
ofSubsingleton
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
ofSubsingleton_self πŸ“–mathematicalβ€”ofSubsingleton
refl
β€”ext
RingHomInvPair.ids
ofSubsingleton_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
symm
ofSubsingleton
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
one_eq_refl πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
automorphismGroup
refl
β€”RingHomInvPair.ids
piUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Unique.instInhabited
Pi.addCommMonoid
Pi.module
EquivLike.toFunLike
instEquivLike
piUnique
Equiv.toFun
Equiv.piUnique
β€”RingHomInvPair.ids
piUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Unique.instInhabited
Pi.addCommMonoid
Pi.module
EquivLike.toFunLike
instEquivLike
symm
piUnique
Equiv.invFun
Equiv.piUnique
β€”RingHomInvPair.ids
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
Nat.iterate
β€”RingHomInvPair.ids
coe_pow
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
restrictScalars
β€”RingHomInvPair.ids
restrictScalars_inj πŸ“–mathematicalβ€”restrictScalarsβ€”RingHomInvPair.ids
restrictScalars_injective
restrictScalars_injective πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
restrictScalars
β€”RingHomInvPair.ids
ext
congr_fun
restrictScalars_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
instEquivLike
symm
restrictScalars
β€”RingHomInvPair.ids
smulOfNeZero_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
smulOfNeZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
Module.toDistribMulAction
β€”RingHomInvPair.ids
smulOfNeZero_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
symm
smulOfNeZero
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instGroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Units.instDistribMulAction
Module.toDistribMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”RingHomInvPair.ids
smul_def πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
applyDistribMulAction
DFunLike.coe
EquivLike.toFunLike
instEquivLike
β€”RingHomInvPair.ids
smul_refl πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instSMulUnitsId
refl
DistribMulAction.toLinearEquiv
Units.instGroup
Units.instDistribMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Units.instSMul
Units.smulCommClass_right
β€”RingHomInvPair.ids
sumPiEquivProdPi_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.module
Prod.instModule
EquivLike.toFunLike
instEquivLike
sumPiEquivProdPi
Equiv
Equiv.instEquivLike
Equiv.sumPiEquivProdPi
β€”RingHomInvPair.ids
sumPiEquivProdPi_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.module
EquivLike.toFunLike
instEquivLike
symm
sumPiEquivProdPi
Equiv
Equiv.instEquivLike
Equiv.symm
Equiv.sumPiEquivProdPi
β€”RingHomInvPair.ids
symm_conj_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Module.End
LinearMap.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
symm
LinearMap.comp
RingHomInvPair.triplesβ‚‚
RingHomCompTriple.ids
toLinearMap
β€”smulCommClass_self
symm_neg πŸ“–mathematicalβ€”symm
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
neg
β€”RingHomInvPair.ids
toAddEquiv_toIntLinearEquiv πŸ“–mathematicalβ€”AddEquiv.toIntLinearEquiv
AddEquivClass.toAddEquiv
LinearEquiv
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
instEquivLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SemilinearEquivClass.toAddEquivClass
instSemilinearEquivClass
β€”RingHomInvPair.ids
DFunLike.coe_injective
SemilinearEquivClass.toAddEquivClass
instSemilinearEquivClass
toAddEquiv_toNatLinearEquiv πŸ“–mathematicalβ€”AddEquiv.toNatLinearEquiv
AddEquivClass.toAddEquiv
LinearEquiv
Nat.instSemiring
RingHom.id
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommMonoid.toNatModule
instEquivLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SemilinearEquivClass.toAddEquivClass
instSemilinearEquivClass
β€”RingHomInvPair.ids
DFunLike.coe_injective
SemilinearEquivClass.toAddEquivClass
instSemilinearEquivClass
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
EquivLike.toFunLike
instEquivLike
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
zero_symm πŸ“–mathematicalβ€”symm
LinearEquiv
instZero
β€”β€”

LinearEquiv.automorphismGroup

Definitions

NameCategoryTheorems
toLinearMapMonoidHom πŸ“–CompOp
1 mathmath: toLinearMapMonoidHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toLinearMapMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
toLinearMapMonoidHom
LinearEquiv.toLinearMap
β€”RingHomInvPair.ids

LinearMap

Definitions

NameCategoryTheorems
funLeft πŸ“–CompOp
16 mathmath: funLeft_id, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, groupCohomology.mapCocyclesβ‚‚_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, funLeft_comp, funLeft_surjective_of_injective, LinearEquiv.funCongrLeft_apply, funLeft_injective_of_surjective, groupCohomology.cochainsMap_f_2_comp_cochainsIsoβ‚‚_apply, groupCohomology.cochainsMap_f, Matrix.mulVecLin_submatrix, groupCohomology.mapCocycles₁_comp_i_apply, Matrix.toLin'_submatrix, groupCohomology.cochainsMap_f_hom, funLeft_apply, Representation.coind_apply
ringLmapEquivSelf πŸ“–CompOp
2 mathmath: ringLmapEquivSelf_symm_apply, ringLmapEquivSelf_apply

Theorems

NameKindAssumesProvesValidatesDepends On
funLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
funLeft
β€”β€”
funLeft_comp πŸ“–mathematicalβ€”funLeft
comp
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”
funLeft_id πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
funLeft
β€”β€”
funLeft_injective_of_surjective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
funLeft
β€”Function.Surjective.injective_comp_right
funLeft_surjective_of_injective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
funLeft
β€”Function.Injective.surjective_comp_right
Zero.instNonempty
ringLmapEquivSelf_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
ringLmapEquivSelf
instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
ringLmapEquivSelf_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
ringLmapEquivSelf
smulRight
Module.End.instOne
β€”RingHomInvPair.ids

Module.End

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_iff πŸ“–mathematicalβ€”IsUnit
Module.End
instMonoid
Function.Bijective
DFunLike.coe
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
β€”Function.bijective_iff_has_inverse
isUnit_inv_apply_apply_of_isUnit
isUnit_apply_inv_apply_of_isUnit
RingHomInvPair.ids
Equiv.left_inv
Equiv.right_inv
LinearMap.ext
LinearEquiv.right_inv
LinearEquiv.left_inv

Module.compHom

Definitions

NameCategoryTheorems
toLinearEquiv πŸ“–CompOp
3 mathmath: Module.Basis.mapCoeffs_repr, toLinearEquiv_symm_apply, toLinearEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Module.compHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
LinearEquiv.instEquivLike
toLinearEquiv
β€”RingHomInvPair.ids
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
toLinearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.compHom
Semiring.toModule
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
LinearEquiv.instEquivLike
LinearEquiv.symm
toLinearEquiv
RingEquiv.symm
β€”RingHomInvPair.ids
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass

(root)

Definitions

NameCategoryTheorems
addMonoidEndRingEquivInt πŸ“–CompOp
2 mathmath: addMonoidEndRingEquivInt_apply, addMonoidEndRingEquivInt_symm_apply
addMonoidHomLequivInt πŸ“–CompOp
4 mathmath: addMonoidHomLequivInt_apply, addMonoidEndRingEquivInt_apply, addMonoidHomLequivInt_symm_apply, addMonoidEndRingEquivInt_symm_apply
addMonoidHomLequivNat πŸ“–CompOp
2 mathmath: addMonoidHomLequivNat_symm_apply, addMonoidHomLequivNat_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addMonoidEndRingEquivInt_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoid.End
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Module.End
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
AddMonoid.End.instMul
Module.End.instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoid.End.instRing
LinearMap.instAdd
RingHom.id
Semiring.toNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
addMonoidEndRingEquivInt
AddHom.toFun
AddMonoidHom
LinearMap
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoidHom.instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.toAddHom
AddMonoidHom.instModule
LinearMap.module
LinearEquiv.toLinearMap
RingHomInvPair.ids
addMonoidHomLequivInt
β€”β€”
addMonoidEndRingEquivInt_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Module.End
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
AddMonoid.End
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Module.End.instMul
AddMonoid.End.instMul
LinearMap.instAdd
RingHom.id
Semiring.toNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoid.End.instRing
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
addMonoidEndRingEquivInt
LinearEquiv.invFun
RingHomInvPair.ids
AddMonoidHom
LinearMap
AddMonoidHom.instAddCommMonoid
LinearMap.addCommMonoid
AddMonoidHom.instModule
LinearMap.module
addMonoidHomLequivInt
β€”β€”
addMonoidHomLequivInt_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearMap
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
AddMonoidHom.instAddCommMonoid
LinearMap.addCommMonoid
AddMonoidHom.instModule
LinearMap.module
AddGroup.int_smulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
addMonoidHomLequivInt
AddMonoidHom.toIntLinearMap
β€”RingHomInvPair.ids
AddGroup.int_smulCommClass
addMonoidHomLequivInt_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearMap.addCommMonoid
AddMonoidHom.instAddCommMonoid
LinearMap.module
AddGroup.int_smulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddMonoidHom.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
addMonoidHomLequivInt
LinearMap.toAddMonoidHom
β€”RingHomInvPair.ids
AddGroup.int_smulCommClass
addMonoidHomLequivNat_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap
Nat.instSemiring
Nat.instNonAssocSemiring
AddCommMonoid.toNatModule
AddMonoidHom.instAddCommMonoid
LinearMap.addCommMonoid
AddMonoidHom.instModule
LinearMap.module
AddMonoid.nat_smulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
addMonoidHomLequivNat
AddMonoidHom.toNatLinearMap
β€”RingHomInvPair.ids
AddMonoid.nat_smulCommClass
addMonoidHomLequivNat_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Nat.instSemiring
Nat.instNonAssocSemiring
AddCommMonoid.toNatModule
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap.addCommMonoid
AddMonoidHom.instAddCommMonoid
LinearMap.module
AddMonoid.nat_smulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddMonoidHom.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
addMonoidHomLequivNat
LinearMap.toAddMonoidHom
β€”RingHomInvPair.ids
AddMonoid.nat_smulCommClass

---

← Back to Index