Documentation Verification Report

Lattice

📁 Source: Mathlib/Algebra/Module/Lattice.lean

Statistics

MetricCount
DefinitionsextendOfIsLattice, IsLattice
2
TheoremsextendOfIsLattice_apply, fg, finite, finrank_of_pi, free, inf, of_le_of_isLattice_of_fg, of_rank_le, rank', rank_of_pi, smul, span_eq_top, sup, span_range_eq_top_of_injective_of_rank_le
14
Total16

Module.Basis

Definitions

NameCategoryTheorems
extendOfIsLattice 📖CompOp
1 mathmath: extendOfIsLattice_apply

Theorems

NameKindAssumesProvesValidatesDepends On
extendOfIsLattice_apply 📖mathematicalDFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
instFunLike
extendOfIsLattice
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module

Submodule

Definitions

NameCategoryTheorems
IsLattice 📖CompData
5 mathmath: IsLattice.of_le_of_isLattice_of_fg, IsLattice.smul, IsLattice.inf, IsLattice.sup, IsLattice.of_rank_le

Theorems

NameKindAssumesProvesValidatesDepends On
span_range_eq_top_of_injective_of_rank_le 📖mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Cardinal
Cardinal.instLE
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
span
SetLike.coe
Submodule
setLike
LinearMap.range
RingHomSurjective.ids
Top.top
instTop
RingHomSurjective.ids
exists_set_linearIndependent
IsDomain.hasRankNullity
LinearIndependent.map'
LinearMap.ker_eq_bot
le_antisymm
LinearIndependent.cardinal_le_rank
EuclideanDomain.toNontrivial
LinearIndependent.iff_fractionRing
Cardinal.mk_eq_nat_iff_fintype
Module.finrank_eq_rank
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
eq_top_iff
LinearIndependent.span_eq_top_of_card_eq_finrank'
span_mono

Submodule.IsLattice

Theorems

NameKindAssumesProvesValidatesDepends On
fg 📖mathematicalSubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
finite 📖mathematicalModule.Finite
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Module.Finite.iff_fg
fg
finrank_of_pi 📖mathematicalModule.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Pi.Function.module
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Fintype.card
Pi.isScalarTower
IsScalarTower.right
Module.finrank_eq_of_rank_eq
rank_of_pi
free 📖mathematicalModule.Free
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Module.IsTorsionFree.trans_faithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
EuclideanDomain.toNontrivial
IsDomain.toNontrivial
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Module.free_of_finite_type_torsion_free'
finite
Ideal.instIsTorsionFreeSubtypeMemSubmodule
inf 📖mathematicalSubmodule.IsLattice
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instMin
isNoetherian_of_le
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
finite
inf_le_left
Module.Finite.iff_fg
Module.IsNoetherian.finite
RingHomSurjective.ids
Submodule.range_subtype
Submodule.span_range_eq_top_of_injective_of_rank_le
Submodule.injective_subtype
Submodule.rank_sup_add_rank_inf_eq
IsDomain.hasRankNullity
Cardinal.eq_of_add_eq_add_left
rank'
sup
Module.rank_lt_aleph0
IsNoetherianRing.strongRankCondition
EuclideanDomain.toNontrivial
EuclideanDomain.to_principal_ideal_domain
le_refl
of_le_of_isLattice_of_fg 📖mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.FG
Submodule.IsLatticeeq_top_iff
le_trans
span_eq_top
le_refl
Submodule.span_mono
of_rank_le 📖mathematicalSubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instLE
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Submodule.IsLattice
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingHomSurjective.ids
Submodule.range_subtype
Submodule.span_range_eq_top_of_injective_of_rank_le
Submodule.injective_subtype
rank' 📖mathematicalModule.rank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
free
FaithfulSMul.to_isTorsionFree
IsFractionRing.instFaithfulSMul
IsDomain.toNontrivial
IsDomain.toIsCancelMulZero
instIsDomain
finite
rank_eq_card_basis
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.toNontrivial
EuclideanDomain.to_principal_ideal_domain
rank_of_pi 📖mathematicalModule.rank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Pi.Function.module
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Cardinal
Cardinal.instNatCast
Fintype.card
Pi.isScalarTower
IsScalarTower.right
rank'
rank_pi
IsNoetherianRing.strongRankCondition
EuclideanDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
instIsDomain
FiniteDimensional.finiteDimensional_self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Finite.of_fintype
Module.rank_self
Cardinal.sum_const
Cardinal.mk_fintype
Cardinal.lift_natCast
Cardinal.lift_one
mul_one
smul 📖mathematicalSubmodule.IsLattice
AddCommGroup.toAddCommMonoid
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Submodule.pointwiseDistribMulAction
Module.toDistribMulAction
IsScalarTower.to_smulCommClass'
IsScalarTower.to_smulCommClass'
fg
Units.smulCommClass_left
Submodule.smul_span
Finite.Set.finite_image
Finite.of_fintype
Submodule.fg_span
Set.toFinite
Submodule.coe_pointwise_smul
smulCommClass_self
span_eq_top
Submodule.ext
smul_inv_smul
Submodule.smul_mem_pointwise_smul
span_eq_top 📖mathematicalSubmodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.coe
Submodule
Submodule.setLike
Top.top
Submodule.instTop
sup 📖mathematicalSubmodule.IsLattice
AddCommGroup.toAddCommMonoid
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
of_le_of_isLattice_of_fg
le_sup_left
Submodule.FG.sup
fg

---

← Back to Index