Documentation Verification Report

Polynomial

πŸ“ Source: Mathlib/Algebra/Module/LinearMap/Polynomial.lean

Statistics

MetricCount
DefinitionsIsNilRegular, nilRank, nilRankAux, polyCharpoly, polyCharpolyAux, toMvPolynomial, toMvPolynomial
7
Theoremsexists_isNilRegular, exists_isNilRegular_of_finrank_le_card, isNilRegular_def, isNilRegular_iff_coeff_polyCharpoly_nilRank_ne_zero, isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank, nilRankAux_basis_indep, nilRankAux_le, nilRank_eq_polyCharpoly_natTrailingDegree, nilRank_le_card, nilRank_le_finrank, nilRank_le_natTrailingDegree_charpoly, polyCharpolyAux_baseChange, polyCharpolyAux_basisIndep, polyCharpolyAux_coeff_eval, polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff, polyCharpolyAux_map_aeval, polyCharpolyAux_map_eq_charpoly, polyCharpolyAux_map_eq_toMatrix_charpoly, polyCharpolyAux_map_eval, polyCharpoly_baseChange, polyCharpoly_coeff_eq_zero_iff_of_basis, polyCharpoly_coeff_eq_zero_of_basis, polyCharpoly_coeff_eval, polyCharpoly_coeff_isHomogeneous, polyCharpoly_coeff_nilRankAux_ne_zero, polyCharpoly_coeff_nilRank_ne_zero, polyCharpoly_eq_of_basis, polyCharpoly_map_eq_charpoly, polyCharpoly_monic, polyCharpoly_natDegree, polyCharpoly_ne_zero, toMvPolynomial_add, toMvPolynomial_baseChange, toMvPolynomial_comp, toMvPolynomial_constantCoeff, toMvPolynomial_eval_eq_apply, toMvPolynomial_id, toMvPolynomial_isHomogeneous, toMvPolynomial_totalDegree_le, toMvPolynomial_zero, toMvPolynomial_add, toMvPolynomial_constantCoeff, toMvPolynomial_eval_eq_apply, toMvPolynomial_isHomogeneous, toMvPolynomial_map, toMvPolynomial_mul, toMvPolynomial_one, toMvPolynomial_totalDegree_le, toMvPolynomial_zero
49
Total56

LinearMap

Definitions

NameCategoryTheorems
IsNilRegular πŸ“–MathDef
5 mathmath: isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank, exists_isNilRegular, isNilRegular_iff_coeff_polyCharpoly_nilRank_ne_zero, exists_isNilRegular_of_finrank_le_card, isNilRegular_def
nilRank πŸ“–CompOp
5 mathmath: isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank, nilRank_eq_polyCharpoly_natTrailingDegree, nilRank_le_card, nilRank_le_natTrailingDegree_charpoly, nilRank_le_finrank
nilRankAux πŸ“–CompOp
2 mathmath: nilRankAux_basis_indep, nilRankAux_le
polyCharpoly πŸ“–CompOp
12 mathmath: nilRankAux_basis_indep, polyCharpoly_coeff_isHomogeneous, nilRank_eq_polyCharpoly_natTrailingDegree, polyCharpoly_baseChange, LieModule.rank_eq_natTrailingDegree, polyCharpoly_eq_of_basis, polyCharpoly_map_eq_charpoly, polyCharpoly_monic, LieAlgebra.rank_eq_natTrailingDegree, polyCharpoly_coeff_eq_zero_iff_of_basis, polyCharpoly_natDegree, polyCharpoly_coeff_eval
polyCharpolyAux πŸ“–CompOp
8 mathmath: polyCharpolyAux_map_eval, polyCharpolyAux_map_eq_charpoly, polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff, polyCharpolyAux_basisIndep, polyCharpolyAux_baseChange, polyCharpolyAux_map_aeval, polyCharpolyAux_coeff_eval, polyCharpolyAux_map_eq_toMatrix_charpoly
toMvPolynomial πŸ“–CompOp
10 mathmath: toMvPolynomial_totalDegree_le, toMvPolynomial_add, toMvPolynomial_zero, toMvPolynomial_baseChange, polyCharpoly_eq_of_basis, toMvPolynomial_constantCoeff, toMvPolynomial_comp, toMvPolynomial_isHomogeneous, toMvPolynomial_eval_eq_apply, toMvPolynomial_id

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isNilRegular πŸ“–mathematicalβ€”IsNilRegularβ€”smulCommClass_self
exists_isNilRegular_of_finrank_le_card
LE.le.trans
Cardinal.natCast_le_aleph0
Cardinal.infinite_iff
exists_isNilRegular_of_finrank_le_card πŸ“–mathematicalβ€”IsNilRegularβ€”smulCommClass_self
polyCharpoly_coeff_isHomogeneous
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
nilRank_le_card
IsDomain.toNontrivial
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
polyCharpoly_coeff_nilRank_ne_zero
MvPolynomial.IsHomogeneous.eq_zero_of_forall_eval_eq_zero_of_le_card
le_trans
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Finite.of_fintype
RingHomInvPair.ids
isNilRegular_iff_coeff_polyCharpoly_nilRank_ne_zero
LinearEquiv.apply_symm_apply
isNilRegular_def πŸ“–mathematicalβ€”IsNilRegularβ€”smulCommClass_self
isNilRegular_iff_coeff_polyCharpoly_nilRank_ne_zero πŸ“–mathematicalβ€”IsNilRegularβ€”smulCommClass_self
RingHomInvPair.ids
IsNilRegular.eq_1
polyCharpoly_coeff_eval
isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank πŸ“–mathematicalβ€”IsNilRegular
Polynomial.natTrailingDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
charpoly
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.End
AddCommGroup.toAddCommMonoid
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
nilRank
β€”smulCommClass_self
isNilRegular_def
le_antisymm
Polynomial.natTrailingDegree_le_of_ne_zero
nilRank_le_natTrailingDegree_charpoly
Polynomial.trailingCoeff_nonzero_iff_nonzero
Polynomial.Monic.ne_zero
charpoly_monic
nilRankAux_basis_indep πŸ“–mathematicalβ€”nilRankAux
Polynomial.natTrailingDegree
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
β€”smulCommClass_self
le_antisymm
nilRankAux_le
nilRankAux_le πŸ“–mathematicalβ€”nilRankAuxβ€”smulCommClass_self
Polynomial.natTrailingDegree_le_of_ne_zero
Iff.not
polyCharpoly_coeff_eq_zero_iff_of_basis
polyCharpoly_coeff_nilRankAux_ne_zero
nilRank_eq_polyCharpoly_natTrailingDegree πŸ“–mathematicalβ€”nilRank
Polynomial.natTrailingDegree
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
β€”smulCommClass_self
nilRankAux_basis_indep
nilRank_le_card πŸ“–mathematicalβ€”nilRank
Fintype.card
β€”smulCommClass_self
Polynomial.natTrailingDegree_le_of_ne_zero
Module.finrank_eq_card_basis
commRing_strongRankCondition
polyCharpoly_natDegree
Polynomial.coeff_natDegree
Polynomial.Monic.leadingCoeff
polyCharpoly_monic
one_ne_zero
NeZero.one
MvPolynomial.nontrivial_of_nontrivial
nilRank_le_finrank πŸ“–mathematicalβ€”nilRank
Module.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”smulCommClass_self
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
nilRank_le_card
nilRank_le_natTrailingDegree_charpoly πŸ“–mathematicalβ€”nilRank
Polynomial.natTrailingDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
charpoly
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.End
AddCommGroup.toAddCommMonoid
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
Polynomial.natTrailingDegree_le_of_ne_zero
Polynomial.trailingCoeff_nonzero_iff_nonzero
Polynomial.Monic.ne_zero
charpoly_monic
RingHomInvPair.ids
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
polyCharpoly_coeff_eval
polyCharpolyAux_baseChange πŸ“–mathematicalβ€”polyCharpolyAux
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
TensorProduct.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
comp
Module.End
addCommMonoid
RingHom.id
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
TensorProduct.addCommMonoid
RingHomCompTriple.ids
tensorProduct
baseChange
Algebra.TensorProduct.basis
Polynomial.map
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.map
algebraMap
β€”smulCommClass_self
Algebra.to_smulCommClass
RingHomCompTriple.ids
Matrix.charpoly.univ_map_map
Polynomial.map_map
MvPolynomial.ringHom_ext
MvPolynomial.map_C
MvPolynomial.bind₁_C_right
MvPolynomial.map_X
MvPolynomial.bind₁_X_right
Finite.of_fintype
toMvPolynomial_comp
toMvPolynomial_baseChange
Finite.instProd
RingHomInvPair.ids
toMatrix_apply
TensorProduct.smulCommClass_left
tensorProduct.eq_1
IsScalarTower.to_smulCommClass
IsScalarTower.compatibleSMul
instIsScalarTower
TensorProduct.AlgebraTensorModule.lift_apply
Algebra.TensorProduct.basis_apply
TensorProduct.lift.tmul
coe_restrictScalars
one_smul
Module.Basis.baseChange_end
Module.Basis.repr_self_apply
Finset.sum_eq_single
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
MvPolynomial.X.eq_1
polyCharpolyAux_basisIndep πŸ“–mathematicalβ€”polyCharpolyAuxβ€”smulCommClass_self
MvPolynomial.aeval_X_left
Polynomial.map_injective
Algebra.to_smulCommClass
Module.Finite.of_basis
Finite.of_fintype
Module.Free.of_basis
TensorProduct.smulCommClass_left
RingHomCompTriple.ids
RingHomInvPair.ids
polyCharpolyAux_map_aeval
polyCharpolyAux_coeff_eval πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
Polynomial.coeff
polyCharpolyAux
charpoly
LinearMap
Module.End
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
RingHomInvPair.ids
polyCharpolyAux_map_eq_charpoly
Polynomial.coeff_map
polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
Polynomial.coeff
polyCharpolyAux
Matrix.charpoly
LinearMap
Matrix
addCommMonoid
Matrix.addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
toMatrix
Finite.of_fintype
Module.End
CommRing.toCommMonoid
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
RingHomInvPair.ids
Finite.of_fintype
polyCharpolyAux_map_eq_toMatrix_charpoly
Polynomial.coeff_map
polyCharpolyAux_map_aeval πŸ“–mathematicalβ€”Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
polyCharpolyAux
charpoly
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
TensorProduct.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
addCommMonoid
module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
comp
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
RingHomCompTriple.ids
tensorProduct
baseChange
LinearEquiv
RingHomInvPair.ids
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finsupp.instAddCommMonoid
Finsupp.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
Module.Basis.repr
Algebra.TensorProduct.basis
Equiv
Equiv.instEquivLike
Equiv.symm
Finsupp.equivFunOnFinite
Finite.of_fintype
β€”smulCommClass_self
Algebra.to_smulCommClass
TensorProduct.smulCommClass_left
RingHomCompTriple.ids
RingHomInvPair.ids
Finite.of_fintype
polyCharpolyAux_map_eval
polyCharpolyAux_baseChange
Polynomial.map_map
DFunLike.ext
MvPolynomial.eval_map
polyCharpolyAux_map_eq_charpoly πŸ“–mathematicalβ€”Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.eval
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
polyCharpolyAux
charpoly
LinearMap
Module.End
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
RingHomInvPair.ids
Unique.instSubsingleton
Finite.of_fintype
polyCharpolyAux_map_eq_toMatrix_charpoly
charpoly_toMatrix
polyCharpolyAux_map_eq_toMatrix_charpoly πŸ“–mathematicalβ€”Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.eval
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
polyCharpolyAux
Matrix.charpoly
LinearMap
Matrix
addCommMonoid
Matrix.addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
toMatrix
Finite.of_fintype
Module.End
CommRing.toCommMonoid
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
RingHomInvPair.ids
Finite.of_fintype
polyCharpolyAux.eq_1
Polynomial.map_map
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MvPolynomial.evalβ‚‚Hom_C_eq_bind₁
MvPolynomial.comp_evalβ‚‚Hom
Matrix.charpoly.univ_map_evalβ‚‚Hom
Matrix.ext
Matrix.of_apply
toMvPolynomial_eval_eq_apply
LinearEquiv.symm_apply_apply
polyCharpolyAux_map_eval πŸ“–mathematicalβ€”Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.eval
polyCharpolyAux
charpoly
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.End
AddCommGroup.toAddCommMonoid
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
LinearEquiv
RingHomInvPair.ids
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
Module.Basis.repr
Equiv
Equiv.instEquivLike
Equiv.symm
Finsupp.equivFunOnFinite
Finite.of_fintype
β€”smulCommClass_self
RingHomInvPair.ids
Finite.of_fintype
polyCharpolyAux_map_eq_charpoly
LinearEquiv.apply_symm_apply
polyCharpoly_baseChange πŸ“–mathematicalβ€”polyCharpoly
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
TensorProduct.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
comp
Module.End
addCommMonoid
RingHom.id
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
TensorProduct.addCommMonoid
RingHomCompTriple.ids
tensorProduct
baseChange
Algebra.TensorProduct.instFree
Module.Finite.base_change
Algebra.TensorProduct.basis
Polynomial.map
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.map
algebraMap
β€”smulCommClass_self
Algebra.to_smulCommClass
RingHomCompTriple.ids
Algebra.TensorProduct.instFree
Module.Finite.base_change
polyCharpolyAux_baseChange
polyCharpolyAux_basisIndep
polyCharpoly_coeff_eq_zero_iff_of_basis πŸ“–mathematicalβ€”Polynomial.coeff
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”smulCommClass_self
polyCharpoly_coeff_eq_zero_of_basis
polyCharpoly_coeff_eq_zero_of_basis πŸ“–β€”Polynomial.coeff
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”β€”smulCommClass_self
polyCharpoly.eq_1
polyCharpolyAux.eq_1
Polynomial.coeff_map
Finite.of_fintype
Finite.instProd
toMvPolynomial_comp
MvPolynomial.bind₁_bind₁
RingHom.coe_coe
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
polyCharpoly_coeff_eval πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
Polynomial.coeff
polyCharpoly
charpoly
LinearMap
Module.End
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
RingHomInvPair.ids
polyCharpoly.eq_1
polyCharpolyAux_coeff_eval
polyCharpoly_coeff_isHomogeneous πŸ“–mathematicalModule.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
MvPolynomial.IsHomogeneous
Polynomial.coeff
MvPolynomial
MvPolynomial.commSemiring
polyCharpoly
β€”smulCommClass_self
polyCharpoly.eq_1
polyCharpolyAux.eq_1
Polynomial.coeff_map
one_mul
MvPolynomial.IsHomogeneous.evalβ‚‚
Matrix.charpoly.univ_coeff_isHomogeneous
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
MvPolynomial.isHomogeneous_C
toMvPolynomial_isHomogeneous
polyCharpoly_coeff_nilRankAux_ne_zero πŸ“–β€”β€”β€”β€”smulCommClass_self
Polynomial.trailingCoeff_nonzero_iff_nonzero
polyCharpoly_ne_zero
polyCharpoly_coeff_nilRank_ne_zero πŸ“–β€”β€”β€”β€”smulCommClass_self
nilRank_eq_polyCharpoly_natTrailingDegree
polyCharpoly_coeff_nilRankAux_ne_zero
polyCharpoly_eq_of_basis πŸ“–mathematicalβ€”polyCharpoly
Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHomClass.toRingHom
AlgHom
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MvPolynomial.bind₁
toMvPolynomial
Module.End
AddCommGroup.toAddCommMonoid
addCommGroup
RingHom.id
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Finite.instProd
Finite.of_fintype
Module.Basis.end
Matrix.charpoly.univ
β€”smulCommClass_self
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Finite.instProd
Finite.of_fintype
polyCharpoly.eq_1
polyCharpolyAux_basisIndep
polyCharpolyAux.eq_1
polyCharpoly_map_eq_charpoly πŸ“–mathematicalβ€”Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.eval
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
polyCharpoly
charpoly
LinearMap
Module.End
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
β€”smulCommClass_self
RingHomInvPair.ids
polyCharpoly.eq_1
polyCharpolyAux_map_eq_charpoly
polyCharpoly_monic πŸ“–mathematicalβ€”Polynomial.Monic
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
β€”smulCommClass_self
Polynomial.Monic.map
Matrix.charpoly.univ_monic
polyCharpoly_natDegree πŸ“–mathematicalβ€”Polynomial.natDegree
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
polyCharpoly
Module.finrank
AddCommGroup.toAddCommMonoid
β€”smulCommClass_self
polyCharpoly.eq_1
polyCharpolyAux.eq_1
Polynomial.Monic.natDegree_map
MvPolynomial.nontrivial_of_nontrivial
Matrix.charpoly.univ_monic
Matrix.charpoly.univ_natDegree
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
polyCharpoly_ne_zero πŸ“–β€”β€”β€”β€”smulCommClass_self
Polynomial.Monic.ne_zero
MvPolynomial.nontrivial_of_nontrivial
polyCharpoly_monic
toMvPolynomial_add πŸ“–mathematicalβ€”toMvPolynomial
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAdd
Pi.instAdd
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Matrix.toMvPolynomial_add
toMvPolynomial_baseChange πŸ“–mathematicalβ€”toMvPolynomial
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
TensorProduct.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
Algebra.TensorProduct.basis
baseChange
DFunLike.coe
RingHom
MvPolynomial
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
algebraMap
β€”Algebra.to_smulCommClass
RingHomInvPair.ids
smulCommClass_self
toMatrix_baseChange
Matrix.toMvPolynomial_map
toMvPolynomial_comp πŸ“–mathematicalβ€”toMvPolynomial
comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.bind₁
Finite.of_fintype
β€”RingHomCompTriple.ids
Finite.of_fintype
RingHomInvPair.ids
smulCommClass_self
toMatrix_comp
Matrix.toMvPolynomial_mul
toMvPolynomial_constantCoeff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.constantCoeff
toMvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Matrix.toMvPolynomial_constantCoeff
toMvPolynomial_eval_eq_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instFunLike
toMvPolynomial
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
LinearMap
instFunLike
LinearEquiv.symm
β€”RingHomInvPair.ids
toMvPolynomial.eq_1
Matrix.toMvPolynomial_eval_eq_apply
smulCommClass_self
toMatrix_mulVec_repr
LinearEquiv.apply_symm_apply
toMvPolynomial_id πŸ“–mathematicalβ€”toMvPolynomial
Finite.of_fintype
id
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
MvPolynomial.X
β€”Finite.of_fintype
toMatrix_id
Matrix.toMvPolynomial_one
toMvPolynomial_isHomogeneous πŸ“–mathematicalβ€”MvPolynomial.IsHomogeneous
CommRing.toCommSemiring
toMvPolynomial
β€”Matrix.toMvPolynomial_isHomogeneous
toMvPolynomial_totalDegree_le πŸ“–mathematicalβ€”MvPolynomial.totalDegree
CommRing.toCommSemiring
toMvPolynomial
β€”Matrix.toMvPolynomial_totalDegree_le
toMvPolynomial_zero πŸ“–mathematicalβ€”toMvPolynomial
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instZero
Pi.instZero
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Matrix.toMvPolynomial_zero

Matrix

Definitions

NameCategoryTheorems
toMvPolynomial πŸ“–CompOp
9 mathmath: toMvPolynomial_add, toMvPolynomial_one, toMvPolynomial_totalDegree_le, toMvPolynomial_map, toMvPolynomial_zero, toMvPolynomial_eval_eq_apply, toMvPolynomial_mul, toMvPolynomial_constantCoeff, toMvPolynomial_isHomogeneous

Theorems

NameKindAssumesProvesValidatesDepends On
toMvPolynomial_add πŸ“–mathematicalβ€”toMvPolynomial
Matrix
add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.instAdd
MvPolynomial
MvPolynomial.commSemiring
β€”Finset.sum_congr
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Finset.sum_add_distrib
toMvPolynomial_constantCoeff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.constantCoeff
toMvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”Finset.sum_congr
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.constantCoeff_X
MulZeroClass.mul_zero
Finset.sum_const_zero
toMvPolynomial_eval_eq_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
toMvPolynomial
mulVec
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Finset.sum_congr
MvPolynomial.eval_monomial
Finsupp.prod_single_index
pow_zero
pow_one
toMvPolynomial_isHomogeneous πŸ“–mathematicalβ€”MvPolynomial.IsHomogeneous
toMvPolynomial
β€”MvPolynomial.IsHomogeneous.sum
MvPolynomial.isHomogeneous_monomial
Finset.sum_congr
Finsupp.support_single_ne_zero
one_ne_zero
Finset.sum_singleton
Finsupp.single_eq_same
toMvPolynomial_map πŸ“–mathematicalβ€”toMvPolynomial
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.map
β€”Finset.sum_congr
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
MvPolynomial.map_monomial
toMvPolynomial_mul πŸ“–mathematicalβ€”toMvPolynomial
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
DFunLike.coe
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.bind₁
β€”Finset.sum_congr
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_comm
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
MvPolynomial.evalβ‚‚_monomial
Finsupp.prod_single_index
pow_zero
pow_one
Finset.mul_sum
MvPolynomial.monomial_mul
zero_add
toMvPolynomial_one πŸ“–mathematicalβ€”toMvPolynomial
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MvPolynomial.X
β€”toMvPolynomial.eq_1
Finset.sum_eq_single
one_apply_ne
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
one_apply_eq
one_mul
toMvPolynomial_totalDegree_le πŸ“–mathematicalβ€”MvPolynomial.totalDegree
toMvPolynomial
β€”MvPolynomial.IsHomogeneous.totalDegree_le
toMvPolynomial_isHomogeneous
toMvPolynomial_zero πŸ“–mathematicalβ€”toMvPolynomial
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.instZero
MvPolynomial
MvPolynomial.commSemiring
β€”MvPolynomial.ext
Finset.sum_congr
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_const_zero

---

← Back to Index