Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Module/Presentation/Basic.lean

Statistics

MetricCount
DefinitionsofIsPresentation, ofLinearEquiv, toRelations, toSolution, G, R, Solution, IsPresentation, desc, linearEquiv, linearMapEquiv, uniq, IsPresentationCore, desc, down, fromQuotient, ofQuotient, ofΟ€, ofΟ€', postcomp, var, Ο€, instAddCommGroupQuotient, instQuotient, map, relation, toQuotient
27
TheoremsofIsPresentation_toRelations, ofIsPresentation_toSolution, ofLinearEquiv_toRelations, ofLinearEquiv_toSolution, toIsPresentation, linearMap_ext, linearMap_ext_iff, bijective, desc_comp_Ο€, desc_var, exact, ker_Ο€, linearEquiv_apply, linearEquiv_symm_var, linearMapEquiv_apply, linearMapEquiv_symm_apply, of_linearEquiv, postcomp_desc, postcomp_injective, postcomp_uniq, postcomp_uniq_symm, surjective_Ο€, uniq_symm_var, uniq_var, Ο€_desc_apply, desc_var, isPresentation, postcomp_desc, postcomp_injective, congr_postcomp, congr_var, ext, ext_iff, fromQuotient_comp_toQuotient, fromQuotient_toQuotient, injective_fromQuotient_iff_ker_Ο€_eq_span, isPresentation_iff, isPresentation_mk, linearCombination_var_relation, ofQuotient_fromQuotient, ofQuotient_isPresentation, ofQuotient_var, ofQuotient_Ο€, ofΟ€'_var, ofΟ€'_Ο€, ofΟ€_var, ofΟ€_Ο€, postcomp_comp, postcomp_id, postcomp_var, range_Ο€, span_relation_le_ker_Ο€, surjective_fromQuotient_iff_surjective_Ο€, surjective_Ο€_iff_span_eq_top, Ο€_comp_map, Ο€_comp_map_apply, Ο€_relation, Ο€_single, ker_toQuotient, map_single, range_map, surjective_toQuotient, toQuotient_map, toQuotient_map_apply, toQuotient_relation
65
Total92

Module.Presentation

Definitions

NameCategoryTheorems
ofIsPresentation πŸ“–CompOp
2 mathmath: ofIsPresentation_toRelations, ofIsPresentation_toSolution
ofLinearEquiv πŸ“–CompOp
2 mathmath: ofLinearEquiv_toSolution, ofLinearEquiv_toRelations
toRelations πŸ“–CompOp
42 mathmath: cokernelRelations_relation, cokernelSolution_var, directSum_var, cokernel_relation, Module.presentationFinsupp_G, cokernel_R, ofExact_G, tensor_R, finsupp_R, directSum_relation, Module.free_iff_exists_presentation, finsupp_G, ofExact_R, toIsPresentation, ofIsPresentation_toRelations, directSum_G, finsupp_var, cokernelRelations_R, tautological_R, Module.presentationFinsupp_R, ofLinearEquiv_toSolution, ofExact_relation, cokernel_var, tensor_G, CokernelData.Ο€_lift, finsupp_relation, exteriorPower.presentation_relation, cokernel_G, tautological_G, cokernelRelations_G, tensor_relation, exteriorPower.presentation_R, tautological_var, ofExact_var, ofLinearEquiv_toRelations, directSum_R, Module.finitePresentation_iff_exists_presentation, exteriorPower.presentation_var, exteriorPower.presentation_G, tautological_relation, Module.presentationFinsupp_var, tensor_var
toSolution πŸ“–CompOp
13 mathmath: cokernelSolution_var, directSum_var, toIsPresentation, finsupp_var, ofLinearEquiv_toSolution, cokernel_var, CokernelData.Ο€_lift, tautological_var, ofExact_var, exteriorPower.presentation_var, ofIsPresentation_toSolution, Module.presentationFinsupp_var, tensor_var

Theorems

NameKindAssumesProvesValidatesDepends On
ofIsPresentation_toRelations πŸ“–mathematicalModule.Relations.Solution.IsPresentationtoRelations
ofIsPresentation
β€”β€”
ofIsPresentation_toSolution πŸ“–mathematicalModule.Relations.Solution.IsPresentationtoSolution
ofIsPresentation
β€”β€”
ofLinearEquiv_toRelations πŸ“–mathematicalβ€”toRelations
ofLinearEquiv
β€”RingHomInvPair.ids
ofLinearEquiv_toSolution πŸ“–mathematicalβ€”toSolution
ofLinearEquiv
Module.Relations.Solution.postcomp
toRelations
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
toIsPresentation πŸ“–mathematicalβ€”Module.Relations.Solution.IsPresentation
toRelations
toSolution
β€”β€”

Module.Relations

Definitions

NameCategoryTheorems
G πŸ“–CompOp
61 mathmath: Module.Presentation.cokernelRelations_relation, directSum_G, Solution.surjective_Ο€_iff_span_eq_top, Module.Presentation.directSum_var, Solution.injective_fromQuotient_iff_ker_Ο€_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο€, Solution.IsPresentation.linearEquiv_symm_var, Module.Presentation.cokernel_relation, Module.presentationFinsupp_G, Solution.directSumEquiv_apply_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Module.Presentation.ofExact_G, Module.Presentation.tensor_R, Solution.ofQuotient_var, Module.Presentation.directSum_relation, Module.Presentation.finsupp_G, range_map, Solution.range_Ο€, Solution.directSum_var, Module.Presentation.directSum_G, Module.Presentation.finsupp_var, map_single, Quotient.linearMap_ext_iff, Module.Presentation.ofExact_relation, tensor_R, Module.Presentation.tensor_G, Module.Presentation.CokernelData.Ο€_lift, solutionFinsupp_var, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, exteriorPower.presentation.relations_G, tensor_G, ker_toQuotient, Solution.IsPresentation.surjective_Ο€, Module.Presentation.cokernel_G, Solution.Ο€_comp_map, Module.Presentation.tautological_G, directSum_relation, toQuotient_map_apply, Module.Presentation.cokernelRelations_G, Module.Presentation.tensor_relation, Solution.Ο€_relation, Solution.IsPresentation.desc_comp_Ο€, Solution.fromQuotient_comp_toQuotient, Solution.span_relation_le_ker_Ο€, toQuotient_relation, Module.finitePresentation_iff_exists_presentation, toQuotient_map, Solution.IsPresentation.exact, solutionFinsupp_isPresentation, exteriorPower.presentation_G, Module.Presentation.tautologicalRelations_G, Solution.Ο€_comp_map_apply, Solution.IsPresentation.ker_Ο€, Algebra.Presentation.differentialsRelations_G, Solution.Ο€_single, tensor_relation, Solution.IsPresentation.Ο€_desc_apply, Solution.linearCombination_var_relation, Solution.ofQuotient_Ο€
R πŸ“–CompOp
32 mathmath: Solution.injective_fromQuotient_iff_ker_Ο€_eq_span, Algebra.Presentation.differentialsRelations_R, Module.Presentation.cokernel_R, Module.Presentation.tensor_R, Module.Presentation.finsupp_R, Module.Presentation.directSum_relation, Module.free_iff_exists_presentation, range_map, Module.Presentation.ofExact_R, Module.Presentation.cokernelRelations_R, Module.Presentation.tautological_R, map_single, Module.presentationFinsupp_R, directSum_R, tensor_R, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, Algebra.Presentation.differentials.comm₁₂, ker_toQuotient, Solution.Ο€_comp_map, exteriorPower.presentation.relations_R, toQuotient_map_apply, exteriorPower.presentation_R, Solution.span_relation_le_ker_Ο€, Module.Presentation.directSum_R, Module.Presentation.tautologicalRelations_R, Module.finitePresentation_iff_exists_presentation, toQuotient_map, Solution.IsPresentation.exact, Solution.Ο€_comp_map_apply, Solution.IsPresentation.ker_Ο€, Solution.ofQuotient_Ο€
Solution πŸ“–CompData
6 mathmath: Solution.directSumEquiv_apply_var, Solution.IsPresentation.linearMapEquiv_apply, Solution.IsPresentation.linearMapEquiv_symm_apply, exteriorPower.presentation.relationsSolutionEquiv_symm_apply_var, exteriorPower.presentation.relationsSolutionEquiv_apply_apply, Solution.directSumEquiv_symm_apply_var
instAddCommGroupQuotient πŸ“–CompOp
17 mathmath: Solution.injective_fromQuotient_iff_ker_Ο€_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο€, Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.IsPresentation.linearEquiv_apply, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, Solution.IsPresentation.bijective, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, Solution.ofQuotient_fromQuotient, toQuotient_relation, toQuotient_map, Solution.ofQuotient_isPresentation, Solution.ofQuotient_Ο€
instQuotient πŸ“–CompOp
17 mathmath: Solution.injective_fromQuotient_iff_ker_Ο€_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο€, Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.IsPresentation.linearEquiv_apply, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, Solution.IsPresentation.bijective, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, Solution.ofQuotient_fromQuotient, toQuotient_relation, toQuotient_map, Solution.ofQuotient_isPresentation, Solution.ofQuotient_Ο€
map πŸ“–CompOp
8 mathmath: range_map, map_single, Algebra.Presentation.differentials.comm₁₂, Solution.Ο€_comp_map, toQuotient_map_apply, toQuotient_map, Solution.IsPresentation.exact, Solution.Ο€_comp_map_apply
relation πŸ“–CompOp
24 mathmath: Module.Presentation.cokernelRelations_relation, Algebra.Presentation.differentials.comm₁₂_single, Solution.injective_fromQuotient_iff_ker_Ο€_eq_span, Module.Presentation.cokernel_relation, Module.Presentation.directSum_relation, range_map, map_single, Module.Presentation.ofExact_relation, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, exteriorPower.presentation_relation, ker_toQuotient, directSum_relation, Module.Presentation.tensor_relation, Solution.Ο€_relation, Solution.span_relation_le_ker_Ο€, toQuotient_relation, Module.Presentation.tautologicalRelations_relation, Solution.IsPresentation.ker_Ο€, Module.Presentation.tautological_relation, exteriorPower.presentation.relations_relation, tensor_relation, Solution.linearCombination_var_relation, Solution.ofQuotient_Ο€
toQuotient πŸ“–CompOp
10 mathmath: Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, toQuotient_relation, toQuotient_map

Theorems

NameKindAssumesProvesValidatesDepends On
ker_toQuotient πŸ“–mathematicalβ€”LinearMap.ker
Finsupp
G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Quotient
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
instQuotient
RingHom.id
Semiring.toNonAssocSemiring
toQuotient
Submodule.span
Set.range
R
relation
β€”Submodule.ker_mkQ
map_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
G
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
map
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
relation
β€”Finsupp.linearCombination_single
one_smul
range_map πŸ“–mathematicalβ€”LinearMap.range
Finsupp
R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
G
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
map
Submodule.span
Set.range
relation
β€”Finsupp.range_linearCombination
surjective_toQuotient πŸ“–mathematicalβ€”Finsupp
G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Quotient
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
instQuotient
LinearMap.instFunLike
toQuotient
β€”Submodule.mkQ_surjective
toQuotient_map πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
G
Quotient
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
instQuotient
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
toQuotient
map
LinearMap
LinearMap.instZero
β€”Finsupp.lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
map_single
toQuotient_relation
toQuotient_map_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Quotient
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
instQuotient
LinearMap.instFunLike
toQuotient
R
map
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”DFunLike.congr_fun
RingHomCompTriple.ids
toQuotient_map
toQuotient_relation πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Quotient
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
instQuotient
LinearMap.instFunLike
toQuotient
relation
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Submodule.mkQ_apply
Submodule.Quotient.mk_eq_zero
Submodule.subset_span

Module.Relations.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
linearMap_ext πŸ“–β€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Module.Relations.Quotient
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Module.Relations.toQuotient
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”Submodule.linearMap_qext
Finsupp.lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
linearMap_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Module.Relations.Quotient
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Module.Relations.toQuotient
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”linearMap_ext

Module.Relations.Solution

Definitions

NameCategoryTheorems
IsPresentation πŸ“–CompData
9 mathmath: Algebra.Presentation.differentialsSolution_isPresentation, Module.Presentation.cokernelSolution.isPresentation, Module.Presentation.toIsPresentation, isPresentation_mk, isPresentation_iff, IsPresentationCore.isPresentation, Module.Relations.solutionFinsupp_isPresentation, ofQuotient_isPresentation, Module.Presentation.tautologicalSolution_isPresentation
IsPresentationCore πŸ“–CompDataβ€”
fromQuotient πŸ“–CompOp
7 mathmath: injective_fromQuotient_iff_ker_Ο€_eq_span, surjective_fromQuotient_iff_surjective_Ο€, fromQuotient_toQuotient, IsPresentation.linearEquiv_apply, IsPresentation.bijective, fromQuotient_comp_toQuotient, ofQuotient_fromQuotient
ofQuotient πŸ“–CompOp
4 mathmath: ofQuotient_var, ofQuotient_fromQuotient, ofQuotient_isPresentation, ofQuotient_Ο€
ofΟ€ πŸ“–CompOp
2 mathmath: ofΟ€_Ο€, ofΟ€_var
ofΟ€' πŸ“–CompOp
2 mathmath: ofΟ€'_var, ofΟ€'_Ο€
postcomp πŸ“–CompOp
11 mathmath: postcomp_comp, postcomp_id, IsPresentation.linearMapEquiv_apply, postcomp_var, Module.Presentation.ofLinearEquiv_toSolution, IsPresentationCore.postcomp_desc, IsPresentation.postcomp_desc, congr_postcomp, IsPresentation.of_linearEquiv, IsPresentation.postcomp_uniq, IsPresentation.postcomp_uniq_symm
var πŸ“–CompOp
33 mathmath: ofΟ€'_var, Module.Presentation.cokernelSolution_var, surjective_Ο€_iff_span_eq_top, Module.Presentation.directSum_var, IsPresentation.linearEquiv_symm_var, Module.Presentation.tautologicalSolution_var, directSumEquiv_apply_var, ofQuotient_var, postcomp_var, exteriorPower.presentation.relationsSolutionEquiv_symm_apply_var, exteriorPower.presentation.relationsSolutionEquiv_apply_apply, range_Ο€, directSum_var, Module.Presentation.finsupp_var, directSumEquiv_symm_apply_var, IsPresentation.uniq_var, Module.Presentation.cokernel_var, Module.Relations.solutionFinsupp_var, tensor_var, isPresentation_iff, IsPresentation.uniq_symm_var, Module.Presentation.tautological_var, Module.Presentation.ofExact_var, ext_iff, ofΟ€_var, exteriorPower.presentation_var, congr_var, Ο€_single, Module.presentationFinsupp_var, linearCombination_var_relation, IsPresentationCore.desc_var, Module.Presentation.tensor_var, IsPresentation.desc_var
Ο€ πŸ“–CompOp
22 mathmath: surjective_Ο€_iff_span_eq_top, Algebra.Presentation.differentials.comm₂₃, injective_fromQuotient_iff_ker_Ο€_eq_span, surjective_fromQuotient_iff_surjective_Ο€, fromQuotient_toQuotient, range_Ο€, ofΟ€'_Ο€, Module.Presentation.CokernelData.Ο€_lift, isPresentation_iff, ofΟ€_Ο€, IsPresentation.surjective_Ο€, Ο€_comp_map, Ο€_relation, IsPresentation.desc_comp_Ο€, fromQuotient_comp_toQuotient, span_relation_le_ker_Ο€, IsPresentation.exact, Ο€_comp_map_apply, IsPresentation.ker_Ο€, Ο€_single, IsPresentation.Ο€_desc_apply, ofQuotient_Ο€

Theorems

NameKindAssumesProvesValidatesDepends On
congr_postcomp πŸ“–mathematicalβ€”postcompβ€”β€”
congr_var πŸ“–mathematicalβ€”varβ€”β€”
ext πŸ“–β€”varβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”varβ€”ext
fromQuotient_comp_toQuotient πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.Relations.Quotient
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Finsupp.module
Semiring.toModule
Module.Relations.instQuotient
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
fromQuotient
Module.Relations.toQuotient
Ο€
β€”RingHomCompTriple.ids
fromQuotient_toQuotient πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Module.Relations.Quotient
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
fromQuotient
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Module.Relations.toQuotient
Ο€
β€”β€”
injective_fromQuotient_iff_ker_Ο€_eq_span πŸ“–mathematicalβ€”Module.Relations.Quotient
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
fromQuotient
LinearMap.ker
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Ο€
Submodule.span
Set.range
Module.Relations.R
Module.Relations.relation
β€”Module.Relations.ker_toQuotient
RingHomCompTriple.ids
fromQuotient_comp_toQuotient
LinearMap.ker_comp
LinearMap.ker_eq_bot
Submodule.comap_bot
eq_bot_iff
Module.Relations.surjective_toQuotient
RingHomSurjective.ids
Module.Relations.range_map
Module.Relations.toQuotient_map_apply
isPresentation_iff πŸ“–mathematicalβ€”IsPresentation
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.range
Module.Relations.G
var
Top.top
Submodule
Submodule.instTop
LinearMap.ker
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
Ο€
Module.Relations.R
Module.Relations.relation
β€”injective_fromQuotient_iff_ker_Ο€_eq_span
surjective_Ο€_iff_span_eq_top
surjective_fromQuotient_iff_surjective_Ο€
IsPresentation.bijective
isPresentation_mk πŸ“–mathematicalSubmodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.range
Module.Relations.G
var
Top.top
Submodule
Submodule.instTop
LinearMap.ker
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
Ο€
Module.Relations.R
Module.Relations.relation
IsPresentationβ€”isPresentation_iff
linearCombination_var_relation πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
var
Module.Relations.relation
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
ofQuotient_fromQuotient πŸ“–mathematicalβ€”fromQuotient
Module.Relations.Quotient
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
ofQuotient
LinearMap.id
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Module.Relations.Quotient.linearMap_ext
ofQuotient_Ο€
ofQuotient_isPresentation πŸ“–mathematicalβ€”IsPresentation
Module.Relations.Quotient
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
ofQuotient
β€”ofQuotient_fromQuotient
Function.bijective_id
ofQuotient_var πŸ“–mathematicalβ€”var
Module.Relations.Quotient
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
ofQuotient
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.toQuotient
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
ofQuotient_Ο€ πŸ“–mathematicalβ€”Ο€
Module.Relations.Quotient
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
ofQuotient
Submodule.mkQ
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Submodule.span
Finsupp.instAddCommMonoid
Set.range
Module.Relations.R
Module.Relations.relation
β€”ofΟ€_Ο€
ofΟ€'_var πŸ“–mathematicalLinearMap.comp
Finsupp
Module.Relations.R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.Relations.G
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Module.Relations.map
LinearMap
LinearMap.instZero
var
ofΟ€'
DFunLike.coe
LinearMap.instFunLike
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHomCompTriple.ids
ofΟ€'_Ο€ πŸ“–mathematicalLinearMap.comp
Finsupp
Module.Relations.R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.Relations.G
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Module.Relations.map
LinearMap
LinearMap.instZero
Ο€
ofΟ€'
β€”RingHomCompTriple.ids
ofΟ€_Ο€
ofΟ€_var πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.relation
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
var
ofΟ€
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
ofΟ€_Ο€ πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.relation
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ο€
ofΟ€
β€”Finsupp.lhom_ext'
LinearMap.ext_ring
RingHomCompTriple.ids
Ο€_single
postcomp_comp πŸ“–mathematicalβ€”postcomp
LinearMap.comp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
postcomp_id πŸ“–mathematicalβ€”postcomp
LinearMap.id
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”β€”
postcomp_var πŸ“–mathematicalβ€”var
postcomp
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
β€”β€”
range_Ο€ πŸ“–mathematicalβ€”LinearMap.range
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Ο€
Submodule.span
Set.range
var
β€”Finsupp.range_linearCombination
span_relation_le_ker_Ο€ πŸ“–mathematicalβ€”Submodule
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
Set.range
Module.Relations.R
Module.Relations.relation
LinearMap.ker
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Ο€
β€”Submodule.span_le
Ο€_relation
surjective_fromQuotient_iff_surjective_Ο€ πŸ“–mathematicalβ€”Module.Relations.Quotient
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
fromQuotient
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Ο€
β€”Function.Surjective.of_comp_iff
Module.Relations.surjective_toQuotient
surjective_Ο€_iff_span_eq_top πŸ“–mathematicalβ€”Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Ο€
Submodule.span
Set.range
var
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
LinearMap.range_eq_top
range_Ο€
Ο€_comp_map πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
Module.Relations.R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.Relations.G
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Ο€
Module.Relations.map
LinearMap
LinearMap.instZero
β€”Finsupp.lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
Module.Relations.map_single
Ο€_relation
Ο€_comp_map_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Ο€
Module.Relations.R
Module.Relations.map
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomCompTriple.ids
Ο€_comp_map
LinearMap.zero_apply
Ο€_relation πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Ο€
Module.Relations.relation
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”linearCombination_var_relation
Ο€_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Ο€
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
var
β€”Finsupp.linearCombination_single
one_smul

Module.Relations.Solution.IsPresentation

Definitions

NameCategoryTheorems
desc πŸ“–CompOp
5 mathmath: linearMapEquiv_symm_apply, postcomp_desc, desc_comp_Ο€, Ο€_desc_apply, desc_var
linearEquiv πŸ“–CompOp
2 mathmath: linearEquiv_symm_var, linearEquiv_apply
linearMapEquiv πŸ“–CompOp
2 mathmath: linearMapEquiv_apply, linearMapEquiv_symm_apply
uniq πŸ“–CompOp
4 mathmath: uniq_var, uniq_symm_var, postcomp_uniq, postcomp_uniq_symm

Theorems

NameKindAssumesProvesValidatesDepends On
bijective πŸ“–mathematicalModule.Relations.Solution.IsPresentationFunction.Bijective
Module.Relations.Quotient
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
LinearMap.instFunLike
Module.Relations.Solution.fromQuotient
β€”β€”
desc_comp_Ο€ πŸ“–mathematicalModule.Relations.Solution.IsPresentationLinearMap.comp
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
desc
Module.Relations.Solution.Ο€
β€”Finsupp.lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
Module.Relations.Solution.Ο€_single
desc_var
desc_var πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
desc
Module.Relations.Solution.var
β€”linearEquiv_symm_var
Module.Relations.Solution.Ο€_single
exact πŸ“–mathematicalModule.Relations.Solution.IsPresentationFunction.Exact
Finsupp
Module.Relations.R
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.Relations.G
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.map
AddCommGroup.toAddCommMonoid
Module.Relations.Solution.Ο€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomSurjective.ids
LinearMap.exact_iff
Module.Relations.range_map
Module.Relations.Solution.injective_fromQuotient_iff_ker_Ο€_eq_span
bijective
ker_Ο€ πŸ“–mathematicalModule.Relations.Solution.IsPresentationLinearMap.ker
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
Module.Relations.Solution.Ο€
Submodule.span
Set.range
Module.Relations.R
Module.Relations.relation
β€”bijective
linearEquiv_apply πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.Relations.Quotient
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
EquivLike.toFunLike
LinearEquiv.instEquivLike
linearEquiv
LinearMap
LinearMap.instFunLike
Module.Relations.Solution.fromQuotient
β€”RingHomInvPair.ids
linearEquiv_symm_var πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.Relations.Quotient
AddCommGroup.toAddCommMonoid
Module.Relations.instAddCommGroupQuotient
Module.Relations.instQuotient
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
linearEquiv
Module.Relations.Solution.var
LinearMap
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.toQuotient
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”LinearEquiv.injective
RingHomInvPair.ids
LinearEquiv.apply_symm_apply
Module.Relations.Solution.Ο€_single
linearMapEquiv_apply πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
Equiv
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Module.Relations.Solution
EquivLike.toFunLike
Equiv.instEquivLike
linearMapEquiv
Module.Relations.Solution.postcomp
β€”β€”
linearMapEquiv_symm_apply πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
Equiv
Module.Relations.Solution
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
linearMapEquiv
desc
β€”β€”
of_linearEquiv πŸ“–mathematicalModule.Relations.Solution.IsPresentationModule.Relations.Solution.postcomp
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
RingHomCompTriple.ids
Module.Relations.Quotient.linearMap_ext
Module.Relations.Solution.Ο€_single
LinearMap.coe_comp
LinearEquiv.coe_coe
Function.Bijective.comp
LinearEquiv.bijective
bijective
postcomp_desc πŸ“–mathematicalModule.Relations.Solution.IsPresentationModule.Relations.Solution.postcomp
desc
β€”Module.Relations.Solution.ext
desc_var
postcomp_injective πŸ“–β€”Module.Relations.Solution.IsPresentation
Module.Relations.Solution.postcomp
β€”β€”RingHomCompTriple.ids
Module.Relations.Quotient.linearMap_ext
Module.Relations.Solution.Ο€_single
Module.Relations.Solution.congr_var
LinearMap.ext
bijective
DFunLike.congr_fun
postcomp_uniq πŸ“–mathematicalModule.Relations.Solution.IsPresentationModule.Relations.Solution.postcomp
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
uniq
β€”RingHomInvPair.ids
postcomp_desc
postcomp_uniq_symm πŸ“–mathematicalModule.Relations.Solution.IsPresentationModule.Relations.Solution.postcomp
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
LinearEquiv.symm
uniq
β€”RingHomInvPair.ids
postcomp_desc
surjective_Ο€ πŸ“–mathematicalModule.Relations.Solution.IsPresentationFinsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Module.Relations.Solution.Ο€
β€”bijective
uniq_symm_var πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
uniq
Module.Relations.Solution.var
β€”RingHomInvPair.ids
desc_var
uniq_var πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
uniq
Module.Relations.Solution.var
β€”RingHomInvPair.ids
desc_var
Ο€_desc_apply πŸ“–mathematicalModule.Relations.Solution.IsPresentationDFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
desc
Finsupp
Module.Relations.G
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Module.Relations.Solution.Ο€
β€”DFunLike.congr_fun
RingHomCompTriple.ids
desc_comp_Ο€

Module.Relations.Solution.IsPresentationCore

Definitions

NameCategoryTheorems
desc πŸ“–CompOp
2 mathmath: postcomp_desc, desc_var
down πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
desc_var πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
desc
Module.Relations.Solution.var
β€”Module.Relations.Solution.congr_var
postcomp_desc
isPresentation πŸ“–mathematicalβ€”Module.Relations.Solution.IsPresentationβ€”RingHomInvPair.ids
postcomp_injective
RingHomInvPair.triplesβ‚‚
Module.Relations.Solution.ext
desc_var
Module.Relations.Solution.Ο€_single
Module.Relations.Quotient.linearMap_ext
LinearEquiv.bijective
postcomp_desc πŸ“–mathematicalβ€”Module.Relations.Solution.postcomp
desc
β€”β€”
postcomp_injective πŸ“–β€”Module.Relations.Solution.postcompβ€”β€”β€”

---

← Back to Index