| Name | Category | Theorems |
G π | CompOp | 61 mathmath: Module.Presentation.cokernelRelations_relation, directSum_G, Solution.surjective_Ο_iff_span_eq_top, Module.Presentation.directSum_var, Solution.injective_fromQuotient_iff_ker_Ο_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο, Solution.IsPresentation.linearEquiv_symm_var, Module.Presentation.cokernel_relation, Module.presentationFinsupp_G, Solution.directSumEquiv_apply_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Module.Presentation.ofExact_G, Module.Presentation.tensor_R, Solution.ofQuotient_var, Module.Presentation.directSum_relation, Module.Presentation.finsupp_G, range_map, Solution.range_Ο, Solution.directSum_var, Module.Presentation.directSum_G, Module.Presentation.finsupp_var, map_single, Quotient.linearMap_ext_iff, Module.Presentation.ofExact_relation, tensor_R, Module.Presentation.tensor_G, Module.Presentation.CokernelData.Ο_lift, solutionFinsupp_var, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, exteriorPower.presentation.relations_G, tensor_G, ker_toQuotient, Solution.IsPresentation.surjective_Ο, Module.Presentation.cokernel_G, Solution.Ο_comp_map, Module.Presentation.tautological_G, directSum_relation, toQuotient_map_apply, Module.Presentation.cokernelRelations_G, Module.Presentation.tensor_relation, Solution.Ο_relation, Solution.IsPresentation.desc_comp_Ο, Solution.fromQuotient_comp_toQuotient, Solution.span_relation_le_ker_Ο, toQuotient_relation, Module.finitePresentation_iff_exists_presentation, toQuotient_map, Solution.IsPresentation.exact, solutionFinsupp_isPresentation, exteriorPower.presentation_G, Module.Presentation.tautologicalRelations_G, Solution.Ο_comp_map_apply, Solution.IsPresentation.ker_Ο, Algebra.Presentation.differentialsRelations_G, Solution.Ο_single, tensor_relation, Solution.IsPresentation.Ο_desc_apply, Solution.linearCombination_var_relation, Solution.ofQuotient_Ο
|
R π | CompOp | 32 mathmath: Solution.injective_fromQuotient_iff_ker_Ο_eq_span, Algebra.Presentation.differentialsRelations_R, Module.Presentation.cokernel_R, Module.Presentation.tensor_R, Module.Presentation.finsupp_R, Module.Presentation.directSum_relation, Module.free_iff_exists_presentation, range_map, Module.Presentation.ofExact_R, Module.Presentation.cokernelRelations_R, Module.Presentation.tautological_R, map_single, Module.presentationFinsupp_R, directSum_R, tensor_R, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, Algebra.Presentation.differentials.commββ, ker_toQuotient, Solution.Ο_comp_map, exteriorPower.presentation.relations_R, toQuotient_map_apply, exteriorPower.presentation_R, Solution.span_relation_le_ker_Ο, Module.Presentation.directSum_R, Module.Presentation.tautologicalRelations_R, Module.finitePresentation_iff_exists_presentation, toQuotient_map, Solution.IsPresentation.exact, Solution.Ο_comp_map_apply, Solution.IsPresentation.ker_Ο, Solution.ofQuotient_Ο
|
Solution π | CompData | 6 mathmath: Solution.directSumEquiv_apply_var, Solution.IsPresentation.linearMapEquiv_apply, Solution.IsPresentation.linearMapEquiv_symm_apply, exteriorPower.presentation.relationsSolutionEquiv_symm_apply_var, exteriorPower.presentation.relationsSolutionEquiv_apply_apply, Solution.directSumEquiv_symm_apply_var
|
instAddCommGroupQuotient π | CompOp | 17 mathmath: Solution.injective_fromQuotient_iff_ker_Ο_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο, Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.IsPresentation.linearEquiv_apply, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, Solution.IsPresentation.bijective, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, Solution.ofQuotient_fromQuotient, toQuotient_relation, toQuotient_map, Solution.ofQuotient_isPresentation, Solution.ofQuotient_Ο
|
instQuotient π | CompOp | 17 mathmath: Solution.injective_fromQuotient_iff_ker_Ο_eq_span, Solution.surjective_fromQuotient_iff_surjective_Ο, Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.IsPresentation.linearEquiv_apply, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, Solution.IsPresentation.bijective, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, Solution.ofQuotient_fromQuotient, toQuotient_relation, toQuotient_map, Solution.ofQuotient_isPresentation, Solution.ofQuotient_Ο
|
map π | CompOp | 8 mathmath: range_map, map_single, Algebra.Presentation.differentials.commββ, Solution.Ο_comp_map, toQuotient_map_apply, toQuotient_map, Solution.IsPresentation.exact, Solution.Ο_comp_map_apply
|
relation π | CompOp | 24 mathmath: Module.Presentation.cokernelRelations_relation, Algebra.Presentation.differentials.commββ_single, Solution.injective_fromQuotient_iff_ker_Ο_eq_span, Module.Presentation.cokernel_relation, Module.Presentation.directSum_relation, range_map, map_single, Module.Presentation.ofExact_relation, Module.Presentation.finsupp_relation, Solution.isPresentation_iff, exteriorPower.presentation_relation, ker_toQuotient, directSum_relation, Module.Presentation.tensor_relation, Solution.Ο_relation, Solution.span_relation_le_ker_Ο, toQuotient_relation, Module.Presentation.tautologicalRelations_relation, Solution.IsPresentation.ker_Ο, Module.Presentation.tautological_relation, exteriorPower.presentation.relations_relation, tensor_relation, Solution.linearCombination_var_relation, Solution.ofQuotient_Ο
|
toQuotient π | CompOp | 10 mathmath: Solution.IsPresentation.linearEquiv_symm_var, surjective_toQuotient, Solution.fromQuotient_toQuotient, Solution.ofQuotient_var, Quotient.linearMap_ext_iff, ker_toQuotient, toQuotient_map_apply, Solution.fromQuotient_comp_toQuotient, toQuotient_relation, toQuotient_map
|