Documentation Verification Report

RingHom

πŸ“ Source: Mathlib/Algebra/Module/RingHom.lean

Statistics

MetricCount
DefinitionsmoduleLeft, compHom, smulOneHom, toModule, ringHomEquivModuleIsScalarTower
5
TheoremssmulOneHom_apply
1
Total6

Function.Surjective

Definitions

NameCategoryTheorems
moduleLeft πŸ“–CompOpβ€”

Module

Definitions

NameCategoryTheorems
compHom πŸ“–CompOp
16 mathmath: PresheafOfModules.restrictScalarsObj_map, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, ModuleCat.RestrictionCoextensionAdj.counit'_app, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, ModuleCat.ExtendScalars.smul_tmul, ModuleCat.ExtendScalars.map_tmul, compHom.toLinearMap_apply, MatrixModCat.isScalarTower_toModuleCat, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, ModuleCat.extendScalarsComp_hom_app_one_tmul, Basis.mapCoeffs_repr, ModuleCat.extendRestrictScalarsAdj_unit_app_apply, PresheafOfModules.ofPresheaf_map, compHom.toLinearEquiv_symm_apply, ModuleCat.semilinearMapAddEquiv_apply, compHom.toLinearEquiv_apply

RingHom

Definitions

NameCategoryTheorems
smulOneHom πŸ“–CompOp
3 mathmath: smulOneHom_eq_algebraMap, smulOneHom_apply, Polynomial.evalβ‚‚_smulOneHom_eq_smeval
toModule πŸ“–CompOp
3 mathmath: Subalgebra.inclusion.isScalarTower_left, Subalgebra.inclusion.isScalarTower_right, Subalgebra.inclusion.faithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
smulOneHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instFunLike
smulOneHom
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
β€”β€”

(root)

Definitions

NameCategoryTheorems
ringHomEquivModuleIsScalarTower πŸ“–CompOpβ€”

---

← Back to Index