Documentation Verification Report

SpanRank

πŸ“ Source: Mathlib/Algebra/Module/SpanRank.lean

Statistics

MetricCount
Definitionsgenerators, spanFinrank, spanRank
3
TheoremsspanFinrank_map_le_of_fg, spanRank_map_le, mk_eq_spanRank, exists_span_set_encard_eq_spanFinrank, finite_generators, generators_mem, generators_ncard, spanRank_le_iff_exists_span_set_card_le, exists_span_set_card_eq_spanRank, fg_iff_spanRank_eq_spanFinrank, generators_card, instNonemptySubtypeSetEqSpan, le_spanRank_restrictScalars, rank_eq_spanRank_of_free, rank_le_spanRank, spanFinrank_bot, spanFinrank_eq_iInf, spanFinrank_eq_zero_iff_eq_bot, spanFinrank_map_le_of_fg, spanFinrank_of_not_fg, spanFinrank_singleton, spanFinrank_span_le_encard, spanFinrank_span_le_ncard_of_finite, spanRank_bot, spanRank_eq_of_equiv, spanRank_eq_zero_iff_eq_bot, spanRank_finite_iff_fg, spanRank_map_eq_of_injective, spanRank_map_le, spanRank_range_le, spanRank_restrictScalars_eq, spanRank_span_le_card, spanRank_span_of_linearIndepOn, spanRank_span_range_of_linearIndependent, spanRank_sup_le_sum_spanRank, spanRank_toENat_eq_iInf_encard, spanRank_toENat_eq_iInf_finset_card, spanRank_top, span_generators
39
Total42

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
spanFinrank_map_le_of_fg πŸ“–mathematicalFGSubmodule.spanFinrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
β€”Cardinal.toNat_le_iff_le_of_lt_aleph0
Submodule.spanRank_finite_iff_fg
FG.map
spanRank_map_le
spanRank_map_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Submodule.spanRank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
β€”Submodule.generators_card
Submodule.FG.spanRank_le_iff_exists_span_set_card_le
Cardinal.mk_image_le
le_antisymm
span_le
mem_map_of_mem
subset_span
Submodule.span_generators
map_le_of_le_comap
RingHom.instRingHomClass
map_span
submodule_span_eq

Module.Basis

Theorems

NameKindAssumesProvesValidatesDepends On
mk_eq_spanRank πŸ“–mathematicalβ€”Set.Elem
Set.range
DFunLike.coe
Module.Basis
instFunLike
Submodule.spanRank
Top.top
Submodule
Submodule.instTop
β€”span_eq
Submodule.spanRank_span_of_linearIndepOn
LinearIndependent.linearIndepOn_id
linearIndependent

Submodule

Definitions

NameCategoryTheorems
generators πŸ“–CompOp
5 mathmath: generators_card, FG.generators_ncard, FG.finite_generators, FG.generators_mem, span_generators
spanFinrank πŸ“–CompOp
20 mathmath: fg_iff_spanRank_eq_spanFinrank, Ideal.height_le_spanFinrank, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_X_mem, spanFinrank_span_le_ncard_of_finite, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_isPrime, spanFinrank_span_le_encard, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, Ideal.spanFinrank_map_le_of_fg, PowerSeries.spanFinrank_eq_spanFinrank_map_constantCoeff_of_X_notMem_of_fg_of_isPrime, spanFinrank_singleton, FG.generators_ncard, height_le_ringKrullDim_quotient_add_spanFinrank, spanFinrank_eq_zero_iff_eq_bot, spanFinrank_bot, ringKrullDim_le_ringKrullDim_add_spanFinrank, spanFinrank_of_not_fg, Ideal.height_le_height_add_spanFinrank_of_le, spanFinrank_map_le_of_fg, FG.exists_span_set_encard_eq_spanFinrank, spanFinrank_eq_iInf
spanRank πŸ“–CompOp
30 mathmath: fg_iff_spanRank_eq_spanFinrank, Ideal.height_le_spanRank, Ideal.height_le_iff_exists_minimalPrimes, generators_card, spanRank_map_le, exists_spanRank_le_and_le_height_of_le_height, spanRank_toENat_eq_iInf_encard, rank_le_spanRank, spanRank_range_le, spanRank_span_of_linearIndepOn, spanRank_span_le_card, le_spanRank_restrictScalars, exists_span_set_card_eq_spanRank, spanRank_finite_iff_fg, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, spanRank_restrictScalars_eq, Ideal.spanRank_map_le, rank_eq_spanRank_of_free, spanRank_map_eq_of_injective, spanRank_toENat_eq_iInf_finset_card, spanRank_sup_le_sum_spanRank, spanRank_span_range_of_linearIndependent, spanRank_eq_zero_iff_eq_bot, spanRank_top, Ideal.exists_spanRank_eq_and_height_eq, Ideal.height_le_spanRank_toENat, Module.Basis.mk_eq_spanRank, spanRank_eq_of_equiv, FG.spanRank_le_iff_exists_span_set_card_le, spanRank_bot

Theorems

NameKindAssumesProvesValidatesDepends On
exists_span_set_card_eq_spanRank πŸ“–mathematicalβ€”Set.Elem
spanRank
span
β€”spanRank.eq_1
csInf_mem
Cardinal.instWellFoundedLT
IsScalarTower.left
span_coe_eq_restrictScalars
restrictScalars_self
fg_iff_spanRank_eq_spanFinrank πŸ“–mathematicalβ€”spanRank
Cardinal
Cardinal.instNatCast
spanFinrank
FG
β€”spanFinrank.eq_1
spanRank_finite_iff_fg
Cardinal.cast_toNat_eq_iff_lt_aleph0
generators_card πŸ“–mathematicalβ€”Set.Elem
generators
spanRank
β€”exists_span_set_card_eq_spanRank
instNonemptySubtypeSetEqSpan πŸ“–mathematicalβ€”Set
Submodule
span
β€”IsScalarTower.left
span_coe_eq_restrictScalars
restrictScalars_self
le_spanRank_restrictScalars πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
spanRank
CommSemiring.toSemiring
restrictScalars
Algebra.toSMul
β€”exists_span_set_card_eq_spanRank
le_imp_le_of_le_of_le
spanRank_span_le_card
le_refl
le_antisymm
span_le
Eq.le
LE.le.trans
Eq.ge
span_le_restrictScalars
rank_eq_spanRank_of_free πŸ“–mathematicalβ€”Module.rank
spanRank
Top.top
Submodule
instTop
β€”Module.Basis.mk_eq_rank''
Module.Basis.mk_eq_spanRank
rankCondition_of_strongRankCondition
Cardinal.lift_id
Cardinal.mk_range_eq_of_injective
Module.Basis.injective
nontrivial_of_invariantBasisNumber
invariantBasisNumber_of_rankCondition
rank_le_spanRank πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Module.rank
spanRank
Top.top
Submodule
instTop
β€”Module.rank_def
spanRank.eq_1
ciSup_le'
le_ciInf
instNonemptySubtypeSetEqSpan
linearIndependent_le_span''
spanFinrank_bot πŸ“–mathematicalβ€”spanFinrank
Bot.bot
Submodule
instBot
β€”β€”
spanFinrank_eq_iInf πŸ“–mathematicalβ€”spanFinrank
iInf
Finset
Submodule
span
SetLike.coe
Finset.instSetLike
Nat.instInfSet
Finset.card
β€”spanRank_toENat_eq_iInf_finset_card
ENat.iInf_toNat
spanFinrank_eq_zero_iff_eq_bot πŸ“–mathematicalFGspanFinrank
Bot.bot
Submodule
instBot
β€”span_generators
Set.ncard_eq_zero
FG.finite_generators
FG.generators_ncard
span_empty
spanFinrank_bot
spanFinrank_map_le_of_fg πŸ“–mathematicalFGspanFinrank
map
β€”Cardinal.toNat_le_iff_le_of_lt_aleph0
spanRank_finite_iff_fg
FG.map
spanRank_map_le
spanFinrank_of_not_fg πŸ“–mathematicalFGspanFinrankβ€”Cardinal.toNat_eq_zero
spanRank_finite_iff_fg
spanFinrank_singleton πŸ“–mathematicalβ€”spanFinrank
span
Set
Set.instSingletonSet
β€”le_antisymm
le_trans
spanFinrank_span_le_ncard_of_finite
Set.ncard_singleton
spanFinrank_eq_zero_iff_eq_bot
fg_span_singleton
spanFinrank_span_le_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
spanFinrank
span
Set.encard
β€”spanFinrank.eq_1
Set.encard.eq_1
ENat.card.eq_1
le_trans
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OrderRingHom.instRingHomClass
OrderRingHom.toRingHom_eq_coe
OrderRingHom.monotone'
spanRank_span_le_card
spanFinrank_span_le_ncard_of_finite πŸ“–mathematicalβ€”spanFinrank
span
Set.ncard
β€”Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_trans
spanFinrank_span_le_encard
Eq.ge
Set.Finite.cast_ncard_eq
spanRank_bot πŸ“–mathematicalβ€”spanRank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Ideal
instBot
Cardinal
Cardinal.instZero
β€”spanRank_eq_zero_iff_eq_bot
spanRank_eq_of_equiv πŸ“–mathematicalβ€”spanRank
Top.top
Submodule
instTop
β€”RingHomSurjective.invPair
spanRank_map_eq_of_injective
LinearEquiv.injective
map_top
LinearEquiv.range
spanRank_eq_zero_iff_eq_bot πŸ“–mathematicalβ€”spanRank
Cardinal
Cardinal.instZero
Bot.bot
Submodule
instBot
β€”FG.spanRank_le_iff_exists_span_set_card_le
le_refl
Cardinal.canonicallyOrderedAdd
span_empty
spanRank.eq_1
Cardinal.iInf_eq_zero_iff
Cardinal.mk_eq_zero
Set.instIsEmptyElemEmptyCollection
spanRank_finite_iff_fg πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
spanRank
Cardinal.aleph0
FG
β€”spanRank.eq_1
fg_def
csInf_mem
Cardinal.instWellFoundedLT
IsScalarTower.left
span_coe_eq_restrictScalars
restrictScalars_self
LE.le.trans_lt
ciInf_le'
spanRank_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
spanRank
map
β€”LE.le.antisymm
spanRank_map_le
exists_span_set_card_eq_spanRank
Set.subset_range_iff_exists_image_eq
HasSubset.Subset.trans
Set.instIsTransSubset
subset_span
Eq.le
LinearMap.map_le_range
le_imp_le_of_le_of_le
spanRank_span_le_card
le_refl
Cardinal.mk_image_eq
span_image
map_injective_of_injective
spanRank_map_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
spanRank
map
β€”generators_card
FG.spanRank_le_iff_exists_span_set_card_le
Cardinal.mk_image_le
le_antisymm
span_le
subset_span
span_generators
span_image
map.congr_simp
spanRank_range_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
spanRank
LinearMap.range
Top.top
Submodule
instTop
β€”map_top
spanRank_map_le
spanRank_restrictScalars_eq πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
spanRank
restrictScalars
Algebra.toSMul
β€”LE.le.antisymm'
le_spanRank_restrictScalars
exists_span_set_card_eq_spanRank
restrictScalars_span
le_imp_le_of_le_of_le
spanRank_span_le_card
le_refl
spanRank_span_le_card πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
spanRank
span
Set.Elem
β€”spanRank.eq_1
ciInf_le'
spanRank_span_of_linearIndepOn πŸ“–mathematicalLinearIndepOnspanRank
span
Set.Elem
β€”spanRank_span_range_of_linearIndependent
Subtype.val_injective
Subtype.range_coe_subtype
spanRank_span_range_of_linearIndependent πŸ“–mathematicalLinearIndependentspanRank
span
Set.range
β€”le_antisymm
le_trans
spanRank_span_le_card
Cardinal.mk_range_le
le_ciInf
instNonemptySubtypeSetEqSpan
Cardinal.mk_preimage_of_injective_of_subset_range
Subtype.val_injective
Subtype.range_coe_subtype
Cardinal.mk_range_eq
Function.Injective.of_comp
Module.Basis.span_apply
le_refl
Module.Basis.le_span
map_injective_of_injective
RingHomSurjective.ids
injective_subtype
map_span
Set.image_congr
Set.image_preimage_eq_inter_range
Set.inter_eq_self_of_subset_left
map_top
range_subtype
spanRank_sup_le_sum_spanRank πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
spanRank
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Cardinal.instAdd
β€”FG.spanRank_le_iff_exists_span_set_card_le
exists_span_set_card_eq_spanRank
Cardinal.mk_union_le
span_union
spanRank_toENat_eq_iInf_encard πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
spanRank
iInf
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Submodule
span
Set.encard
β€”spanRank.eq_1
le_antisymm
le_iInfβ‚‚
Set.encard.eq_1
ENat.card.eq_1
OrderRingHom.monotone'
ciInf_le'
Cardinal.toENat_comp_ofENat
le_ciInf
instNonemptySubtypeSetEqSpan
le_trans
Cardinal.ofENat_toENat_le
spanRank_toENat_eq_iInf_finset_card πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
spanRank
iInf
Finset
Submodule
span
SetLike.coe
Finset.instSetLike
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
Finset.card
β€”spanRank_toENat_eq_iInf_encard
eq_or_ne
Set.encard_ne_top_iff
Finset.finite_toSet
le_antisymm
le_iInf
iInfβ‚‚_le
iInf_le_of_le
Set.Finite.coe_toFinset
Set.Infinite.encard_eq
OrderTop.le_top
spanRank_top πŸ“–mathematicalβ€”spanRank
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
Top.top
instTop
β€”RingHomSurjective.ids
map_top
range_subtype
spanRank_map_eq_of_injective
subtype_injective
span_generators πŸ“–mathematicalβ€”span
generators
β€”exists_span_set_card_eq_spanRank

Submodule.FG

Theorems

NameKindAssumesProvesValidatesDepends On
exists_span_set_encard_eq_spanFinrank πŸ“–mathematicalSubmodule.FGSet.encard
ENat
ENat.instNatCast
Submodule.spanFinrank
Submodule.span
β€”Submodule.exists_span_set_card_eq_spanRank
Submodule.fg_iff_spanRank_eq_spanFinrank
Set.encard.eq_1
ENat.card.eq_1
Submodule.spanFinrank.eq_1
map_natCast
OrderRingHom.instRingHomClass
Cardinal.toNat_natCast
finite_generators πŸ“–mathematicalSubmodule.FGSet.Finite
Submodule.generators
β€”Cardinal.lt_aleph0_iff_set_finite
Submodule.generators_card
Submodule.spanRank_finite_iff_fg
generators_mem πŸ“–mathematicalβ€”Set
Set.instHasSubset
Submodule.generators
SetLike.coe
Submodule
Submodule.setLike
β€”Submodule.span_generators
Submodule.subset_span
generators_ncard πŸ“–mathematicalSubmodule.FGSet.ncard
Submodule.generators
Submodule.spanFinrank
β€”Cardinal.instCharZero
Submodule.fg_iff_spanRank_eq_spanFinrank
Set.ncard.eq_1
Set.encard.eq_1
ENat.card.eq_1
Submodule.generators_card
Cardinal.toNat_toENat
Submodule.spanFinrank.eq_1
spanRank_le_iff_exists_span_set_card_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Submodule.spanRank
Set.Elem
Submodule.span
β€”Submodule.exists_span_set_card_eq_spanRank
le_trans
Submodule.spanRank_span_le_card

---

← Back to Index