Documentation Verification Report

Bilinear

šŸ“ Source: Mathlib/Algebra/Module/Submodule/Bilinear.lean

Statistics

MetricCount
Definitionsmapā‚‚
1
Theoremsapply_mem_mapā‚‚, image2_subset_mapā‚‚, map_mapā‚‚, mapā‚‚_bot_left, mapā‚‚_bot_right, mapā‚‚_eq_span_image2, mapā‚‚_flip, mapā‚‚_iSup_left, mapā‚‚_iSup_right, mapā‚‚_le, mapā‚‚_le_mapā‚‚, mapā‚‚_le_mapā‚‚_left, mapā‚‚_le_mapā‚‚_right, mapā‚‚_map_left, mapā‚‚_map_map, mapā‚‚_map_right, mapā‚‚_span_singleton_eq_map, mapā‚‚_span_singleton_eq_map_flip, mapā‚‚_span_span, mapā‚‚_sup_left, mapā‚‚_sup_right
21
Total22

Submodule

Definitions

NameCategoryTheorems
mapā‚‚ šŸ“–CompOp
28 mathmath: smul_eq_mapā‚‚, TensorProduct.range_mapIncl, mapā‚‚_iSup_right, TensorProduct.range_map, mapā‚‚_le_mapā‚‚, mapā‚‚_bot_right, TensorProduct.mapā‚‚_eq_range_lift_comp_mapIncl, mapā‚‚_iSup_left, mapā‚‚_bot_left, mapā‚‚_map_left, mapā‚‚_map_right, apply_mem_mapā‚‚, mapā‚‚_eq_span_image2, mapā‚‚_span_singleton_eq_map_flip, mapā‚‚_span_span, mapā‚‚_le, TensorProduct.mapā‚‚_mk_top_top_eq_top, mapā‚‚_span_singleton_eq_map, mapā‚‚_flip, map_mapā‚‚, FG.mapā‚‚, image2_subset_mapā‚‚, mapā‚‚_sup_left, mul_eq_mapā‚‚, mapā‚‚_map_map, mapā‚‚_le_mapā‚‚_left, mapā‚‚_sup_right, mapā‚‚_le_mapā‚‚_right

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_mapā‚‚ šŸ“–mathematicalSubmodule
CommSemiring.toSemiring
SetLike.instMembership
setLike
mapā‚‚
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
le_iSup
image2_subset_mapā‚‚ šŸ“–mathematical—Set
Set.instHasSubset
Set.image2
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SetLike.coe
Submodule
setLike
mapā‚‚
—smulCommClass_self
apply_mem_mapā‚‚
map_mapā‚‚ šŸ“–mathematical—map
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mapā‚‚
LinearMap.comprā‚‚
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—smulCommClass_self
RingHomSurjective.ids
IsScalarTower.left
map_iSup
iSup_congr
RingHomCompTriple.ids
map_comp
mapā‚‚_bot_left šŸ“–mathematical—mapā‚‚
Bot.bot
Submodule
CommSemiring.toSemiring
instBot
—smulCommClass_self
eq_bot_iff
mapā‚‚_le
mem_bot
LinearMap.map_zeroā‚‚
mapā‚‚_bot_right šŸ“–mathematical—mapā‚‚
Bot.bot
Submodule
CommSemiring.toSemiring
instBot
—smulCommClass_self
eq_bot_iff
mapā‚‚_le
mem_bot
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mapā‚‚_eq_span_image2 šŸ“–mathematical—mapā‚‚
span
CommSemiring.toSemiring
Set.image2
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SetLike.coe
Submodule
setLike
—smulCommClass_self
mapā‚‚_span_span
span_eq
mapā‚‚_flip šŸ“–mathematical—mapā‚‚
LinearMap.flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHom.id
Semiring.toNonAssocSemiring
—smulCommClass_self
mapā‚‚_eq_span_image2
Set.image2_swap
mapā‚‚_iSup_left šŸ“–mathematical—mapā‚‚
iSup
Submodule
CommSemiring.toSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
—smulCommClass_self
mapā‚‚_span_span
Set.image2_iUnion_left
span_eq
mapā‚‚_iSup_right šŸ“–mathematical—mapā‚‚
iSup
Submodule
CommSemiring.toSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
—smulCommClass_self
mapā‚‚_span_span
Set.image2_iUnion_right
span_eq
mapā‚‚_le šŸ“–mathematical—Submodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
SetLike.instMembership
setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
apply_mem_mapā‚‚
iSup_le
map_le_iff_le_comap
mapā‚‚_le_mapā‚‚ šŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂—smulCommClass_self
mapā‚‚_le
apply_mem_mapā‚‚
mapā‚‚_le_mapā‚‚_left šŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂—smulCommClass_self
mapā‚‚_le_mapā‚‚
le_refl
mapā‚‚_le_mapā‚‚_right šŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂—smulCommClass_self
mapā‚‚_le_mapā‚‚
le_refl
mapā‚‚_map_left šŸ“–mathematical—mapā‚‚
map
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.comp
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHomCompTriple.ids
—smulCommClass_self
RingHomSurjective.ids
RingHomCompTriple.ids
mapā‚‚_flip
mapā‚‚_map_right
mapā‚‚_map_map šŸ“–mathematical—mapā‚‚
map
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.compl₁₂
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
RingHomSurjective.ids
RingHomCompTriple.ids
mapā‚‚_map_right
mapā‚‚_map_left
mapā‚‚_map_right šŸ“–mathematical—mapā‚‚
map
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.complā‚‚
RingHomCompTriple.ids
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
iSup_congr
RingHomSurjective.ids
RingHomCompTriple.ids
map_comp
mapā‚‚_span_singleton_eq_map šŸ“–mathematical—mapā‚‚
span
CommSemiring.toSemiring
Set
Set.instSingletonSet
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
—smulCommClass_self
RingHomSurjective.ids
span_eq
mapā‚‚_span_span
Set.image2_singleton_left
map_span
mapā‚‚_span_singleton_eq_map_flip šŸ“–mathematical—mapā‚‚
span
CommSemiring.toSemiring
Set
Set.instSingletonSet
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearMap.instFunLike
LinearMap.flip
—smulCommClass_self
RingHomSurjective.ids
SMulCommClass.symm
mapā‚‚_span_singleton_eq_map
mapā‚‚_flip
mapā‚‚_span_span šŸ“–mathematical—mapā‚‚
span
CommSemiring.toSemiring
Set.image2
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
le_antisymm
mapā‚‚_le
span_induction
subset_span
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
AddSubmonoidClass.toAddMemClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
span_le
Set.image2_subset_iff
apply_mem_mapā‚‚
mapā‚‚_sup_left šŸ“–mathematical—mapā‚‚
Submodule
CommSemiring.toSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
—smulCommClass_self
le_antisymm
mapā‚‚_le
mem_sup
apply_mem_mapā‚‚
LinearMap.map_addā‚‚
sup_le
mapā‚‚_le_mapā‚‚_left
le_sup_left
le_sup_right
mapā‚‚_sup_right šŸ“–mathematical—mapā‚‚
Submodule
CommSemiring.toSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
—smulCommClass_self
le_antisymm
mapā‚‚_le
mem_sup
apply_mem_mapā‚‚
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
sup_le
mapā‚‚_le_mapā‚‚_right
le_sup_left
le_sup_right

---

← Back to Index