Documentation Verification Report

Invariant

πŸ“ Source: Mathlib/Algebra/Module/Submodule/Invariant.lean

Statistics

MetricCount
DefinitionsinvtSubmodule, instBoundedOrderSubtypeSubmoduleMemSublattice
2
Theoremsmap_mem_invtSubmodule_conj_iff, map_mem_invtSubmodule_iff, bot_mem, codisjoint_iff, codisjoint_mk_iff, comp, disjoint_iff, disjoint_mk_iff, id, inf_mem, isCompl_iff, isCompl_mk_iff, map_subtype_mem_of_mem_invtSubmodule, mk_eq_bot_iff, mk_eq_top_iff, one, sup_mem, top_mem, zero, mem_invtSubmodule, mem_invtSubmodule_iff_forall_mem_of_mem, mem_invtSubmodule_iff_map_le, mem_invtSubmodule_iff_mapsTo, mem_invtSubmodule_symm_iff_le_map, span_orbit_mem_invtSubmodule, mem_invtSubmodule
26
Total28

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
map_mem_invtSubmodule_conj_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.End
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
Submodule.map
RingHomSurjective.ids
toLinearMap
β€”RingHomInvPair.ids
RingHomCompTriple.ids
LinearMap.ext
symm_apply_apply
smulCommClass_self
RingHomSurjective.ids
RingHomInvPair.triplesβ‚‚
conj_apply
Module.End.mem_invtSubmodule
Submodule.map_le_iff_le_comap
RingHomSurjective.invPair
Submodule.map_equiv_eq_comap_symm
Submodule.comap_comp
map_mem_invtSubmodule_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
RingHomInvPair.ids
DFunLike.coe
LinearEquiv
Module.End
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
conj
symm
β€”RingHomInvPair.ids
RingHomSurjective.ids
smulCommClass_self
map_mem_invtSubmodule_conj_iff
conj_conj_symm

Module.End

Definitions

NameCategoryTheorems
invtSubmodule πŸ“–CompOp
42 mathmath: mem_invtSubmodule, RootPairing.Base.forall_mem_support_invtSubmodule_iff, LinearMap.IsProj.mem_invtSubmodule_iff, LinearMap.IsIdempotentElem.commute_iff, LinearEquiv.map_mem_invtSubmodule_conj_iff, Submodule.mem_invtSubmodule_reflection_of_mem, mem_invtSubmodule_iff_mapsTo, ContinuousLinearMap.IsIdempotentElem.ker_mem_invtSubmodule, RootPairing.mem_invtRootSubmodule_iff, LinearMap.IsIdempotentElem.ker_mem_invtSubmodule_iff, invtSubmodule.isCompl_iff, invtSubmodule.one, RootPairing.corootSpan_mem_invtSubmodule_coreflection, isFinitelySemisimple_iff, VonNeumannAlgebra.IsIdempotentElem.mem_iff, VonNeumannAlgebra.IsStarProjection.mem_iff, LinearMap.IsIdempotentElem.range_mem_invtSubmodule, Module.AEval.mem_mapSubmodule_symm_apply, mem_invtSubmodule_symm_iff_le_map, span_orbit_mem_invtSubmodule, invtSubmodule.codisjoint_iff, ContinuousLinearMap.IsIdempotentElem.range_mem_invtSubmodule_iff, ContinuousLinearMap.IsIdempotentElem.commute_iff, Set.Mapsto.mem_invtSubmodule, ContinuousLinearMap.IsIdempotentElem.range_mem_invtSubmodule, mem_invtSubmodule_iff_forall_mem_of_mem, invtSubmodule.top_mem, RootPairing.rootSpan_mem_invtSubmodule_reflection, isSemisimple_iff', LinearMap.IsIdempotentElem.range_mem_invtSubmodule_iff, invtSubmodule.zero, invtSubmodule.id, LinearEquiv.map_mem_invtSubmodule_iff, LinearMap.IsIdempotentElem.ker_mem_invtSubmodule, invtSubmodule.bot_mem, mem_invtSubmodule_iff_map_le, Module.AEval.mem_mapSubmodule_apply, Representation.mem_invtSubmodule, Submodule.mem_invtSubmodule_reflection_iff, invtSubmodule.disjoint_iff, isSemisimple_iff, ContinuousLinearMap.IsIdempotentElem.ker_mem_invtSubmodule_iff

Theorems

NameKindAssumesProvesValidatesDepends On
mem_invtSubmodule πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
β€”β€”
mem_invtSubmodule_iff_forall_mem_of_mem πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
Submodule.setLike
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
β€”β€”
mem_invtSubmodule_iff_map_le πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
β€”RingHomSurjective.ids
Submodule.map_le_iff_le_comap
mem_invtSubmodule_iff_mapsTo πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
Set.MapsTo
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule.setLike
β€”β€”
mem_invtSubmodule_symm_iff_le_map πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearEquiv.symm
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
RingHomSurjective.ids
β€”RingHomInvPair.ids
RingHomSurjective.ids
mem_invtSubmodule_iff_map_le
Equiv.subset_symm_image
span_orbit_mem_invtSubmodule πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
DistribSMul.toLinearMap
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
Submodule.span
MulAction.orbit
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
β€”mem_invtSubmodule
Submodule.span_le
Submodule.comap_coe
Submodule.subset_span
MulAction.mem_orbit_of_mem_orbit

Module.End.invtSubmodule

Definitions

NameCategoryTheorems
instBoundedOrderSubtypeSubmoduleMemSublattice πŸ“–CompOp
9 mathmath: disjoint_mk_iff, isCompl_iff, mk_eq_top_iff, isCompl_mk_iff, codisjoint_iff, Module.End.isSemisimple_iff', mk_eq_bot_iff, codisjoint_mk_iff, disjoint_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Bot.bot
Submodule.instBot
β€”β€”
codisjoint_iff πŸ“–mathematicalβ€”Codisjoint
Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Subtype.partialOrder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instOrderTop
β€”β€”
codisjoint_mk_iff πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Codisjoint
Subtype.partialOrder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instOrderTop
β€”codisjoint_iff
Sublattice.supClosed
Subtype.mk_eq_top_iff
comp πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”
disjoint_iff πŸ“–mathematicalβ€”Disjoint
Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Subtype.partialOrder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instOrderBot
β€”β€”
disjoint_mk_iff πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Disjoint
Subtype.partialOrder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instOrderBot
β€”disjoint_iff
Sublattice.infClosed
Subtype.mk_eq_bot_iff
id πŸ“–mathematicalβ€”Module.End.invtSubmodule
LinearMap.id
Top.top
Sublattice
Submodule
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Sublattice.instTop
β€”eq_top_iff
Submodule.comap_id
inf_mem πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Submodule.instMinβ€”Sublattice.inf_mem
isCompl_iff πŸ“–mathematicalβ€”IsCompl
Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Subtype.partialOrder
Submodule.instPartialOrder
instBoundedOrderSubtypeSubmoduleMemSublattice
CompleteLattice.toBoundedOrder
β€”β€”
isCompl_mk_iff πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
IsCompl
Subtype.partialOrder
Submodule.instPartialOrder
instBoundedOrderSubtypeSubmoduleMemSublattice
CompleteLattice.toBoundedOrder
β€”β€”
map_subtype_mem_of_mem_invtSubmodule πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.restrict
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.subtype
β€”RingHomSurjective.ids
LinearMap.restrict_apply
Submodule.mem_comap
mk_eq_bot_iff πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instBot
β€”Subtype.mk_eq_bot_iff
mk_eq_top_iff πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instTop
β€”Subtype.mk_eq_top_iff
one πŸ“–mathematicalβ€”Module.End.invtSubmodule
Module.End
Module.End.instOne
Top.top
Sublattice
Submodule
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Sublattice.instTop
β€”id
sup_mem πŸ“–mathematicalSubmodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”Sublattice.sup_mem
top_mem πŸ“–mathematicalβ€”Submodule
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Top.top
Submodule.instTop
β€”β€”
zero πŸ“–mathematicalβ€”Module.End.invtSubmodule
Module.End
LinearMap.instZero
RingHom.id
Semiring.toNonAssocSemiring
Top.top
Sublattice
Submodule
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Sublattice.instTop
β€”eq_top_iff
Submodule.comap_zero

Set.Mapsto

Theorems

NameKindAssumesProvesValidatesDepends On
mem_invtSubmodule πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
β€”Module.End.mem_invtSubmodule_iff_mapsTo

---

← Back to Index