subtype 📖 | CompOp | 195 mathmath: LinearMap.lTensor_ker_subtype_tensorKerEquiv_symm, Rep.resCoindHomEquiv_symm_apply_hom, StarModule.decomposeProdAdjointL_symm_apply, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, TensorProduct.forall_vanishesTrivially_iff_forall_fg_rTensor_injective, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, iSupIndep.dfinsupp_lsum_injective, subtype_comp_inclusion, groupCohomology.isoCocycles₁_hom_comp_i_apply, LinearMap.subtype_comp_codRestrict, LinearMap.IsProj.subtype_comp_codRestrict, LinearMap.subtype_comp_restrict, LinearMap.BilinForm.ker_restrict_eq_of_codisjoint, covBy_iff_quot_is_simple, Rep.resCoindAdjunction_counit_app_hom_hom, LinearMap.le_ker_iff_comp_subtype_eq_zero, mulMap_one_right_eq, Module.Flat.ker_lTensor_eq, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, LinearMap.tensorKer_coe, coe_subtypeL', selfAdjointPart_comp_subtype_skewAdjoint, TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul, Module.End.eigenspace_restrict_le_eigenspace, groupHomology.isoCycles₁_inv_comp_iCycles_apply, biSup_comap_subtype_eq_top, RootPairing.injOn_dualMap_subtype_span_root_coroot, biSup_eq_range_dfinsupp_lsum, selfAdjointPart_comp_subtype_selfAdjoint, Module.Flat.out, equivSubtypeMap_symm_apply, groupCohomology.mapCocycles₂_comp_i_apply, ker_subtype, LinearMap.exact_subtype_mkQ, sup_eq_range, goursat, subtypeₗᵢ_toLinearMap, LinearMap.lTensor_range, subtype_apply, LinearMap.tensorEqLocus_coe, ModuleCat.imageIsoRange_hom_subtype, coe_prodEquivOfIsCompl, groupCohomology.shortComplexH0_f, Module.Flat.iff_rTensor_injective, Rep.subtype_hom, Ideal.map_includeRight_eq, inf_genEigenspace, TensorProduct.exists_finite_submodule_left_of_setFinite, TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul, strictMono_comap_prod_map, LieIdeal.incl_coe, LinearMap.comap_leq_ker_subToSupQuotient, LinearMap.rTensor_injective_iff_subtype, LinearMap.subtype_compAlternatingMap_codRestrict, LinearMap.quotientInfEquivSupQuotient_apply_mk, mem_iSup_iff_exists_dfinsupp, TensorProduct.exists_finite_submodule_right_of_setFinite, iSup_eq_range_dfinsupp_lsum, LinearIndependent.linearCombination_comp_repr, StarModule.decomposeProdAdjoint_symm_apply, LieSubmodule.toEnd_comp_subtype_mem, FG.lTensor.directLimit_apply', dualRestrict_def, groupHomology.mapCycles₁_comp_i_apply, FG.rTensor.directLimit_apply, LinearMap.BilinForm.inf_orthogonal_self_le_ker_restrict, comap_subtype_self, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, Module.Flat.eqLocus_lTensor_eq, TensorProduct.exists_finite_submodule_left_of_finite, LinearMap.comap_codRestrict, comap_equiv_self_of_inj_of_le_apply, exists_fg_le_subset_range_rTensor_subtype, TensorProduct.rTensor_injective_of_forall_vanishesTrivially, set_smul_eq_map, LinearMap.quotientInfEquivSupQuotient_injective, LinearMap.ker_domRestrict, realPart_comp_subtype_selfAdjoint, map_subtype_embedding_eq, ModuleCat.imageIsoRange_hom_subtype_assoc, comap_subtype_eq_top, natAbs_det_equiv, map_subtype_span_singleton, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, skewAdjointPart_comp_subtype_selfAdjoint, ModuleCat.imageIsoRange_inv_image_ι, Module.Flat.iff_lTensor_injective, AffineSubspace.subtype_linear, TensorProduct.quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, TensorProduct.tensorQuotientEquiv_apply_mk_tmul, injective_subtype, linearProjOfIsCompl_comp_subtype, coe_subtypeₗᵢ, Finsupp.restrictDom_comp_subtype, rTensor_mkQ, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_d₀₁_assoc, imaginaryPart_comp_subtype_selfAdjoint, iSupIndep.linearEquiv_apply, Module.Flat.iff_lTensor_injectiveₛ, Function.Exact.linearMap_rangeRestrict, Module.End.invtSubmodule.map_subtype_mem_of_mem_invtSubmodule, TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective, equivSubtypeMap_apply, isIdempotentElemEquiv_symm_apply_coe, groupHomology.isoCycles₁_hom_comp_i_apply, AffineSubspace.subtypeₐᵢ_linear, ModuleCat.imageIsoRange_inv_image_ι_assoc, Rep.invariantsAdjunction_counit_app_hom, Module.injOn_dualMap_subtype_span_range_range, ModuleCat.kernelIsoKer_hom_ker_subtype, Finsupp.linearCombination_restrict, DirectSum.decomposeLinearEquiv_symm_comp_lof, Function.Exact.iff_linearMap_rangeRestrict, mulMap_one_left_eq, LinearMap.kerComplementEquivRange_symm_apply, groupHomology.isoCycles₂_inv_comp_iCycles_apply, LinearMap.map_codRestrict, TensorProduct.quotientTensorEquiv_apply_tmul_mk, LinearMap.exact_subtype_ker_map, Ideal.natAbs_det_equiv, finrank_map_subtype_eq, Ideal.subtype_isoBaseOfIsPrincipal_eq_mul, coe_mapIic_apply, Module.Flat.iff_lift_lsmul_comp_subtype_injective, FG.lTensor.directLimit_apply, Module.fgSystem.equiv_comp_of, range_inclusion, groupCohomology.mapCocycles₁_comp_i_apply, coe_subtype, isCompl_comap_subtype_of_isCompl_of_le, iSupIndep_iff_dfinsupp_lsum_injective, LinearMap.coe_quotientInfToSupQuotient, TensorProduct.exists_finite_submodule_right_of_finite, LinearMap.subtype_compMultilinearMap_codRestrict, map_subtype_top, Rep.invariantsFunctor_map_hom, Module.End.iInf_maxGenEigenspace_restrict_map_subtype_eq, LinearMap.rTensor_range, inf_iInf_maxGenEigenspace_of_forall_mapsTo, Module.Flat.iff_rTensor_injectiveₛ, LinearMap.exists_extend, Module.flat_iff, LinearMap.ker_id_sub_eq_of_proj, exists_fg_le_eq_rTensor_subtype, LinearMap.ker_restrict, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.subtype_comp_d₀₁, map_range_rTensor_subtype_lid, LinearMap.BilinForm.toLin_restrict_ker_eq_inf_orthogonal, LieSubmodule.incl_coe, map_comap_subtype, LinearMap.quotientInfEquivSupQuotient_symm_apply_left, groupCohomology.isoCocycles₂_hom_comp_i_apply, LinearMap.ofIsCompl_subtype_zero_eq, map_subtype_range_inclusion, LinearPMap.coe_vadd, Module.Dual.eq_of_preReflection_mapsTo', LinearMap.range_codRestrict, mem_biSup_iff_exists_dfinsupp, range_subtype, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, subtype_injective, comapSubtypeEquivOfLe_apply_coe, ModuleCat.mono_as_hom'_subtype, DirectSum.isInternal_biSup_submodule_of_iSupIndep, LinearMap.ker_le_range_iff, Ideal.map_toCotangent_ker, exteriorPower.ιMulti_family_span, LinearMap.exists_extend_of_notMem, LinearMap.comp_ker_subtype, TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk, ModuleCat.kernelIsoKer_inv_kernel_ι, Module.Flat.iff_rTensor_injective', skewAdjointPart_comp_subtype_skewAdjoint, FG.rTensor.directLimit_apply', lTensor_mkQ, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, comapSubtypeEquivOfLe_symm_apply, Module.End.genEigenspace_restrict, coe_subtypeL, Ideal.map_includeLeft_eq, LinearMap.quotientInfEquivSupQuotient_surjective, Module.Basis.SmithNormalForm.coord_apply_embedding_eq_smul_coord, LinearMap.surjective_comp_subtype_of_isComplemented, Module.Flat.iff_lTensor_injective', map_subtype_le, TensorProduct.exists_of_fg, disjoint_iff_comap_eq_bot, LinearMap.lTensor_eqLocus_subtype_tensoreqLocusEquiv_symm, lsum_comp_mapRange_toSpanSingleton, Ideal.to_quotient_square_comp_toCotangent, comap_subtype_le_iff
|