Documentation Verification Report

Map

πŸ“ Source: Mathlib/Algebra/Module/Submodule/Map.lean

Statistics

MetricCount
DefinitionssubmoduleMap, submoduleComap, submoduleMap, comap, comapSubtypeEquivOfLe, compatibleMaps, equivMapOfInjective, gciMapComap, giMapComap, map, orderIsoMapComap, orderIsoMapComapOfBijective, submoduleOf, submoduleOfEquivOfLe
14
Theoremscoe_toIntLinearMap_map, coe_toMultiplicative_map, submoduleMap_apply, submoduleMap_symm_apply, comap_codRestrict, iInf_invariant, map_codRestrict, submoduleComap_apply_coe, submoduleComap_surjective_of_surjective, submoduleMap_coe_apply, submoduleMap_surjective, coe_toAdditive_map, coe_toIntLinearMap_comap, apply_coe_mem_map, coe_equivMapOfInjective_apply, comapSubtypeEquivOfLe_apply_coe, comapSubtypeEquivOfLe_symm_apply, comap_coe, comap_comp, comap_equiv_eq_map_symm, comap_finsetInf, comap_iInf, comap_iInf_map_of_injective, comap_iSup_map_of_injective, comap_id, comap_inf, comap_inf_map_of_injective, comap_injective_of_surjective, comap_le_comap_iff_of_surjective, comap_le_comap_smul, comap_lt_comap_iff_of_surjective, comap_lt_of_lt_map_of_injective, comap_map_eq_of_injective, comap_mono, comap_neg, comap_smul, comap_smul', comap_strictMono_of_surjective, comap_sup_map_of_injective, comap_surjective_of_injective, comap_top, comap_zero, disjoint_iff_comap_eq_bot, disjoint_map, eq_zero_of_bot_submodule, gc_map_comap, inf_comap_le_comap_add, le_comap_map, le_comap_pow_of_le_comap, le_map_of_comap_le_of_surjective, lt_map_of_comap_lt_of_surjective, map_add_le, map_bot, map_coe, map_comap_eq_of_surjective, map_comap_le, map_comap_subtype, map_comp, map_covBy_of_injective, map_eq_bot_iff, map_eq_top_iff, map_equivMapOfInjective_symm_apply, map_equiv_eq_comap_symm, map_iInf, map_iInf_comap_of_surjective, map_iSup, map_iSup_comap_of_surjective, map_id, map_inf, map_inf_comap_of_surjective, map_inf_eq_map_inf_comap, map_inf_le, map_injective_of_injective, map_le_iff_le_comap, map_le_map_iff_of_injective, map_lt_map_iff_of_injective, map_mono, map_ne_bot_iff, map_ne_top_iff, map_neg, map_smul, map_smul', map_strictMono_of_injective, map_sup, map_sup_comap_of_surjective, map_surjective_of_surjective, map_symm_eq_iff, map_toAddSubgroup, map_toAddSubmonoid, map_toAddSubmonoid', map_zero, mem_comap, mem_map, mem_map_equiv, mem_map_of_mem, orderIsoMapComapOfBijective_apply, orderIsoMapComapOfBijective_symm_apply, orderIsoMapComap_apply, orderIsoMapComap_apply', orderIsoMapComap_symm_apply, orderIsoMapComap_symm_apply', range_map_nonempty, surjOn_iff_le_map
103
Total117

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toIntLinearMap_map πŸ“–mathematicalβ€”Submodule.map
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toIntLinearMap
DFunLike.coe
OrderIso
AddSubgroup
AddCommGroup.toAddGroup
Submodule
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderIso
AddSubgroup.toIntSubmodule
AddSubgroup.map
β€”RingHomSurjective.ids
coe_toMultiplicative_map πŸ“–mathematicalβ€”Subgroup.map
Multiplicative
Multiplicative.group
DFunLike.coe
Equiv
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MonoidHom
MulOneClass.toMulOne
Multiplicative.mulOneClass
EquivLike.toFunLike
Equiv.instEquivLike
toMultiplicative
OrderIso
AddSubgroup
Subgroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Subgroup.instPartialOrder
instFunLikeOrderIso
AddSubgroup.toSubgroup
AddSubgroup.map
β€”β€”

LinearEquiv

Definitions

NameCategoryTheorems
submoduleMap πŸ“–CompOp
3 mathmath: submoduleMap_apply, submoduleMap_symm_apply, Polynomial.taylorLinearEquiv_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
submoduleMap_apply πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHomSurjective.invPair
toLinearMap
DFunLike.coe
LinearEquiv
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
instEquivLike
submoduleMap
β€”RingHomSurjective.invPair
submoduleMap_symm_apply πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearEquiv
Submodule.map
RingHomSurjective.invPair
toLinearMap
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
instEquivLike
symm
submoduleMap
β€”RingHomSurjective.invPair

LinearMap

Definitions

NameCategoryTheorems
submoduleComap πŸ“–CompOp
2 mathmath: submoduleComap_apply_coe, submoduleComap_surjective_of_surjective
submoduleMap πŸ“–CompOp
4 mathmath: submoduleMap_coe_apply, Submodule.coe_mulMap_comp_eq, Submodule.mulMap_map_comp_eq, submoduleMap_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
comap_codRestrict πŸ“–mathematicalSubmodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
instFunLike
Submodule.comap
Submodule.addCommMonoid
Submodule.module
codRestrict
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.subtype
β€”Submodule.ext
RingHomSurjective.ids
iInf_invariant πŸ“–β€”Submodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
instFunLike
iInf
Submodule.instInfSet
β€”β€”β€”
map_codRestrict πŸ“–mathematicalSubmodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
instFunLike
Submodule.map
Submodule.addCommMonoid
Submodule.module
codRestrict
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.subtype
β€”Submodule.ext
submoduleComap_apply_coe πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.comap
Submodule.addCommMonoid
Submodule.module
instFunLike
submoduleComap
β€”β€”
submoduleComap_surjective_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.comap
Submodule.addCommMonoid
Submodule.module
submoduleComap
β€”Submodule.mem_comap
Subtype.val_injective
submoduleMap_coe_apply πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
Submodule.addCommMonoid
Submodule.module
instFunLike
submoduleMap
β€”RingHomSurjective.ids
submoduleMap_surjective πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
Submodule.addCommMonoid
Submodule.module
instFunLike
submoduleMap
β€”AddMonoidHom.addSubmonoidMap_surjective

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toAdditive_map πŸ“–mathematicalβ€”AddSubgroup.map
Additive
Additive.addGroup
DFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidHom
AddZeroClass.toAddZero
Additive.addZeroClass
EquivLike.toFunLike
Equiv.instEquivLike
toAdditive
OrderIso
Subgroup
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
Subgroup.toAddSubgroup
Subgroup.map
β€”β€”

Submodule

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
171 mathmath: comap_lt_comap_iff_of_surjective, comap_le_comap_iff_of_le_range, LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, LinearMap.prod_eq_inf_comap, comap_zero, comap_equiv_eq_map_symm, comap_inf, map_comap_eq_of_le, LinearMap.BilinForm.ker_restrict_eq_of_codisjoint, Module.End.mem_invtSubmodule, covBy_iff_quot_is_simple, comap_neg, mem_colon', comap_op_mul, LinearMap.submoduleComap_apply_coe, comap_op_pow, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, comap_mono, comap_le_comap_smul, comap_map_eq_of_injective, biSup_comap_eq_top_of_surjective, map_comap_eq_self, comap_fst, dualAnnihilator_map_dualMap_le, le_comap_range_lTensor, biSup_comap_subtype_eq_top, Representation.Coinvariants.le_comap_ker, comap_id, map_comap_eq, map_inf_comap_of_surjective, prod_comap_inr, DFinsupp.range_mapRangeLinearMap, LinearMap.prodMap_comap_prod, goursat, comap_iInf_map_of_injective, comap_smul, LinearMap.span_preimage_le, mem_comap, DirectSum.ker_lmap, Polynomial.comap_taylorEquiv_degreeLT, Module.comap_eval_surjective, strictMono_comap_prod_map, mem_annihilator', Module.comap_jacobson_of_ker_le, comap_iSup_map_of_injective, Finsupp.supported_comap_lmapDomain, biInf_comap_proj, LinearMap.comap_leq_ker_subToSupQuotient, comap_map_eq_self, LinearEquiv.ofSubmodule'_symm_apply, comap_dualAnnihilator, LinearMap.quotientInfEquivSupQuotient_apply_mk, comap_iInf, map_inf_eq_map_inf_comap, comap_coe, CliffordAlgebra.submodule_comap_mul_reverse, LinearMap.ker_comp, isCoatom_comap_iff, KaehlerDifferential.ker_map, orderIsoMapComap_apply', comap_subtype_self, LinearMap.comap_codRestrict, comap_finsetInf, LinearMap.comap_injective, comap_sup_map_of_injective, comap_equiv_self_of_inj_of_le_apply, comap_injective_of_surjective, isCoatom_comap_or_eq_top, comap_strictMono_of_surjective, LinearMap.quotientInfEquivSupQuotient_injective, equivOpposite_apply, span_preimage_eq, LinearMap.ker_domRestrict, comap_snd, le_comap_mkQ, comap_subtype_eq_top, le_comap_map, CliffordAlgebra.ΞΉ_range_comap_involute, comap_inf_map_of_injective, comap_covBy_of_surjective, orderIsoMapComapOfBijective_symm_apply, ContinuousLinearEquiv.ofSubmodule'_apply, Module.comap_jacobson_of_bijective, comapMkQOrderEmbedding_eq, map_equiv_eq_comap_symm, comap_map_mkQ, orderIsoMapComap_symm_apply, biSup_comap_eq_top_of_range_eq_biSup, gc_map_comap, LinearEquiv.ofSubmodule'_toLinearMap, inf_comap_le_comap_add, LinearMap.range_le_iff_comap, DFinsupp.ker_mapRangeLinearMap, IsOrtho.comap_iff, comap_comp, ClosedSubmodule.toSubmodule_comap, comap_lt_of_lt_map_of_injective, Representation.le_comap_invariants, AffineMap.restrict.linear_aux, LinearMap.map_codRestrict, LinearEquiv.ofSubmodule'_apply, prod_comap_inl, map_liftQ, LieSubmodule.toSubmodule_comap, LinearMap.comap_eq_sup_ker_of_disjoint, comap_surjective_of_injective, map_iSup_comap_of_surjective, range_inclusion, LinearMap.comap_prod_prod, comap_le_comap_iff_of_surjective, smul_comap_le_comap_smul, map_iInf_comap_of_surjective, AddMonoidHom.coe_toIntLinearMap_comap, map_comap_eq_of_surjective, isCompl_comap_subtype_of_isCompl_of_le, DirectSum.range_lmap, LinearMap.le_comap_isotypicComponent, CliffordAlgebra.submodule_comap_pow_reverse, LinearMap.coe_quotientInfToSupQuotient, comap_unop_pow, map_sup_comap_of_surjective, ContinuousLinearEquiv.ofSubmodule'_symm_apply, le_comap_single_pi, LinearMap.submoduleComap_surjective_of_surjective, LinearMap.ker_restrict, CliffordAlgebra.submodule_map_reverse_eq_comap, map_comap_le, isSMulRegular_on_quot_iff_lsmul_comap_eq, CliffordAlgebra.evenOdd_comap_reverse, span_preimage_le, equivOpposite_symm_apply, SModEq.comap, map_comap_subtype, comap_unop_one, LinearMap.quotientInfEquivSupQuotient_symm_apply_left, map_le_iff_le_comap, mulMap_op, comap_smul', comap_smul'', LinearMap.range_codRestrict, CliffordAlgebra.evenOdd_comap_involute, comap_op_one, comapSubtypeEquivOfLe_apply_coe, DirectSum.isInternal_biSup_submodule_of_iSupIndep, isSMulRegular_on_quot_iff_lsmul_comap_le, smul_top_le_comap_smul_top, Valuation.leSubmodule_comap_algebraMap_eq_leIdeal, CliffordAlgebra.ΞΉ_range_comap_reverse, iInf_comap_proj, comap_top, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, Module.le_comap_jacobson, comapSubtypeEquivOfLe_symm_apply, comap_bot, Module.End.genEigenspace_restrict, le_comap_range_rTensor, LinearMap.quotientInfEquivSupQuotient_surjective, IsOrtho.comap, Subspace.comap_dualAnnihilator_dualAnnihilator, comap_liftQ, ContinuousLinearEquiv.ofSubmodule'_toContinuousLinearMap, comap_sup_of_injective, comap_unop_mul, disjoint_iff_comap_eq_bot, CliffordAlgebra.submodule_map_involute_eq_comap, LieIdeal.comap_toSubmodule, Module.mapEvalEquiv_symm_apply, LinearMap.ker_le_comap, LinearMap.comap_le_comap_iff, comap_subtype_le_iff, comap_map_eq
comapSubtypeEquivOfLe πŸ“–CompOp
2 mathmath: comapSubtypeEquivOfLe_apply_coe, comapSubtypeEquivOfLe_symm_apply
compatibleMaps πŸ“–CompOpβ€”
equivMapOfInjective πŸ“–CompOp
3 mathmath: AffineSubspace.linear_equivMapOfInjective, map_equivMapOfInjective_symm_apply, coe_equivMapOfInjective_apply
gciMapComap πŸ“–CompOpβ€”
giMapComap πŸ“–CompOpβ€”
map πŸ“–CompOp
323 mathmath: CliffordAlgebra.ΞΉ_range_map_map, LinearPMap.inverse_graph, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, LinearMap.iterateRange_succ, comap_equiv_eq_map_symm, LinearMap.map_le_map_iff, Subspace.dualAnnihilator_dualAnnihilator_eq_map, map_comap_eq_of_le, map_dualCoannihilator_le, lift_rank_map_le, LieSubalgebra.mem_map_submodule, RootPairing.rootSpan_dualAnnihilator_le_ker_rootForm, spanRank_map_le, LinearPMap.neg_graph, Ideal.span_pow_eq_map_homogeneousSubmodule, Ideal.span_eq_map_homogeneousSubmodule, LinearEquiv.map_mem_invtSubmodule_conj_iff, map_iSup, LinearMap.iSupIndep_map, fg_map_iff, rank_map_le, map_span_le, comap_map_eq_of_injective, map_comap_eq_self, iSup_map_single_le, LinearIsometry.map_starProjection', LinearMap.map_injective, Module.End.eigenspace_restrict_le_eigenspace, dualAnnihilator_map_dualMap_le, IsLocalRing.map_mkQ_eq, adjoin_monomial_eq_reesAlgebra, LinearMap.submoduleMap_coe_apply, toLinearPMap_range, Ring.jacobson_quotient_of_le, CliffordAlgebra.ΞΉ_range_map_lift, comap_map_sup_of_comap_le, IsOrtho.map_iff, RootPairing.finrank_rootSpan_map_polarization_eq_finrank_corootSpan, equivSubtypeMap_symm_apply, map_comap_eq, map_smul'', map_lt_map_of_le_of_sup_lt_sup, SModEq.map, LinearMap.map_le_map_iff', map_inf_comap_of_surjective, Module.mapEvalEquiv_apply, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, Module.map_jacobson_of_bijective, mem_map, LieSubmodule.lie_top_eq_of_span_sup_eq_top, Finsupp.span_image_eq_map_linearCombination, map_id, goursat, comap_iInf_map_of_injective, quotientQuotientEquivQuotientAux_mk, AffineSubspace.map_mk', prod_le_iff, map_top, map_le_map_iff_of_injective, map_unop_mul, LinearIsometry.isComplete_map_iff, codisjoint_map, topologicalClosure_map, LieSubmodule.coe_map_toEnd_le, monomial_mem_adjoin_monomial, inf_genEigenspace, LinearMap.map_coprod_prod, strictMono_comap_prod_map, Module.End.map_genEigenrange_le, RootPairing.corootSpan_map_flip_toPerfPair, map_bot, comap_iSup_map_of_injective, IsLocalRing.map_tensorProduct_mk_eq_top, DenseRange.topologicalClosure_map_submodule, map_sup, LinearMap.IsPerfectCompl.isCompl_right, LieSubmodule.toSubmodule_map, LinearMap.range_comp, FG.map, map_mkQ_eq_top, map_eq_top_iff, snd_map_fst, comap_map_eq_self, Function.Exact.exact_mapQ_iff, map_orthogonal_equiv, differentialIdeal_le_iff, apply_coe_mem_map, mapβ‚‚_map_left, LieIdeal.map_toSubmodule, span_algebraMap_image, dualCoannihilator_map_linearEquiv_flip, RootPairing.rootSpan_map_toPerfPair, isCoatom_map_of_ker_le, RootPairing.corootSpan_dualAnnihilator_map_eq, map_inf_eq_map_inf_comap, MvPolynomial.map_restrict_dom_evalβ‚—, snd_map_snd, IsOrtho.map, mapβ‚‚_map_right, map_strictMono_of_injective, CliffordAlgebra.submodule_map_pow_reverse, annihilator_map_mkQ_eq_colon, LieSubmodule.mem_baseChange_iff, KaehlerDifferential.ker_map, LinearMap.BilinForm.inf_orthogonal_self_le_ker_restrict, CliffordAlgebra.evenOdd_map_reverse, map_unop_pow, CliffordAlgebra.ΞΉ_range_map_reverse, LinearMap.comap_codRestrict, span_image_linearEquiv, comap_sup_map_of_injective, CliffordAlgebra.ΞΉ_range_map_involute, HasOrthogonalProjection.map_linearIsometryEquiv', card_quotient_mul_card_quotient, set_smul_eq_map, map_equiv_traceDual, LinearMap.IsIdempotentElem.commute_iff_of_isUnit, Module.map_jacobson_of_ker_le, map_comp, map_subtype_embedding_eq, exists_dual_map_eq_bot_of_lt_top, baseChange_eq_span, span_algebraMap_image_of_tower, AffineMap.map_vectorSpan, LinearIsometryEquiv.completeSpace_map, disjoint_map, mapβ‚‚_span_singleton_eq_map_flip, map_op_pow, starProjection_map_apply, le_comap_map, LinearDisjoint.map, map_subtype_span_singleton, Function.Surjective.lieModule_lcs_map_eq, differentialIdeal_le_fractionalIdeal_iff, comap_inf_map_of_injective, finrank_map_le, map_iInf, singleton_smul, orderIsoMapComap_symm_apply', KaehlerDifferential.kerTotal_map, coe_mulMap_comp_eq, LinearEquiv.submoduleMap_apply, map_mul, IsPrincipal.generator_map_dvd_of_mem, closure_coe_iSup_map_single, map_inr, ZSpan.map, map_equiv_eq_comap_symm, LieIdeal.coe_map_of_surjective, map_le_isotypicComponent, map_strict_mono_of_ker_inf_eq, Subalgebra.map_toSubmodule, comap_map_mkQ, toLinearPMap_domain, Module.End.invtSubmodule.map_subtype_mem_of_mem_invtSubmodule, LinearIsometry.map_starProjection, equivSubtypeMap_apply, map_eq_bot_iff, reflection_map, orderIsoMapComap_apply, AffineSubspace.map_direction, spanRank_map_eq_of_injective, IsPrincipal.map, fst_map_fst, LinearMap.map_span, map_surjective_of_surjective, gc_map_comap, map_symm_eq_iff, map_op_mul, RootPairing.ker_rootForm_eq_dualAnnihilator, RootPairing.range_polarizationIn, iSup_map_single, Module.jacobson_quotient_of_le, LinearMap.prodMap_map_prod, LinearIsometryEquiv.submoduleMap_symm_apply_coe, mapβ‚‚_span_singleton_eq_map, fst_map_snd, lt_map_of_comap_lt_of_surjective, map_inf, FractionalIdeal.den_mul_self_eq_num, map_smul', FractionalIdeal.coe_map, WithCStarModule.map_top_submodule, mkQ_map_self, Module.End.mem_invtSubmodule_symm_iff_le_map, map_mapβ‚‚, map_pointwise_smul, map_zero, Ideal.map_eq_submodule_map, LinearMap.map_le_range, LinearEquiv.submoduleMap_symm_apply, LinearMap.map_codRestrict, map_inl, AffineSubspace.linear_equivMapOfInjective, Ring.map_jacobson_le, ContinuousLinearMap.IsIdempotentElem.commute_iff_of_isUnit, AddMonoidHom.coe_toIntLinearMap_map, map_unop_one, finrank_map_subtype_eq, reflection_map_apply, map_lt_map_iff_of_injective, coe_mapIic_apply, map_liftQ, CliffordAlgebra.submodule_map_mul_reverse, ContinuousLinearEquiv.submoduleMap_symm_apply, LinearIsometry.completeSpace_map, range_map_nonempty, ContinuousLinearMap.range_eq_map_coprodSubtypeLEquivOfIsCompl, toLinearPMap_apply_aux, mulMap_map_comp_eq, map_iSup_comap_of_surjective, map_mono, IsLocalRing.CotangentSpace.map_eq_top_iff, map_iInf_comap_of_surjective, Subspace.map_le_dualAnnihilator_dualAnnihilator, map_comap_eq_of_surjective, RootPairing.rootSpan_dualAnnihilator_map_eq_iInf_ker_root', LinearMap.range_domRestrict, LinearEquiv.rank_map_eq, CliffordAlgebra.evenOdd_map_involute, LinearPMap.smul_graph, map_strict_mono_or_ker_sup_lt_ker_sup, KaehlerDifferential.ker_map_of_surjective, map_subtype_top, map_sup_comap_of_surjective, IsFractional.map, ContinuousLinearEquiv.submoduleMap_apply, LinearMap.map_span_le, Module.End.iInf_maxGenEigenspace_restrict_map_subtype_eq, Module.Finite.map, inf_iInf_maxGenEigenspace_of_forall_mapsTo, map_pow, LinearMap.coprod_map_prod, LinearMap.range_eq_map, mem_map_of_mem, orderIsoMapComapOfBijective_apply, map_orthogonal, map_iInf_of_ker_le, CliffordAlgebra.submodule_map_reverse_eq_comap, RootPairing.corootSpan_dualAnnihilator_le_ker_rootForm, LinearMap.map_eq_top_iff, map_range_rTensor_subtype_lid, map_comap_le, FiniteDimensional.instSubtypeMemSubmoduleMap, Module.map_eval_injective, mapHom_apply, LinearMap.BilinForm.toLin_restrict_ker_eq_inf_orthogonal, Finsupp.span_single_image, map_span, prod_map_fst, RootPairing.rootSpan_dualAnnihilator_map_eq, map_comap_subtype, LinearIsometry.isComplete_map_iff', ExteriorAlgebra.ΞΉ_range_map_map, le_map_of_comap_le_of_surjective, map_toAddSubgroup, Ring.map_jacobson_of_ker_le, exists_dual_map_eq_bot_of_notMem, map_le_iff_le_comap, span_image, LinearPMap.graph_map_fst_eq_domain, Module.map_jacobson_le, spanFinrank_map_le_of_fg, IsLocalRing.map_mkQ_eq_top, LinearEquiv.finrank_map_eq, map_covBy_of_injective, map_subtype_range_inclusion, LinearEquiv.lift_rank_map_eq, LinearEquiv.map_mem_invtSubmodule_iff, map_neg, dualAnnihilator_map_linearEquiv_flip_symm, map_coe, le_prod_iff, mapβ‚‚_map_map, map_toAddSubmonoid', HasOrthogonalProjection.map_linearIsometryEquiv, topologicalClosure_iSup_map_single, Ideal.map_toCotangent_ker, map_op_one, map_dualCoannihilator_linearEquiv_flip, Subspace.map_dualCoannihilator, ker_liftQ, mem_map_equiv, map_add_le, RootPairing.corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot', map_equivMapOfInjective_symm_apply, map_le_localizedβ‚€, RootPairing.invtSubmodule_reflection_of_invtSubmodule_coreflection, LinearMap.le_ker_iff_map, Module.End.mem_invtSubmodule_iff_map_le, map_one, map_injective_of_injective, RootPairing.ker_corootForm_eq_dualAnnihilator, le_traceDual_iff_map_le_one, KaehlerDifferential.kerTotal_map', mem_graph_toLinearPMap, lieModule_lcs_map_le, LinearMap.IsPerfectCompl.isCompl_left, map_dualAnnihilator_linearEquiv_flip_symm, LinearPMap.graph_map_snd_eq_range, Polynomial.taylorLinearEquiv_apply_coe, map_toAddSubmonoid, map_div, LinearIsometry.submoduleMap_apply_coe, AffineMap.vectorSpan_image_eq_submodule_map, map_inf_le, map_subtype_le, comap_liftQ, coe_equivMapOfInjective_apply, CliffordAlgebra.submodule_map_involute_eq_comap, LinearMap.submoduleMap_surjective, LinearMap.prod_eq_sup_map, map_smul, NonUnitalSubalgebra.map_toSubmodule, surjOn_iff_le_map, prod_map_snd, map_le_smul_top, Finsupp.lmapDomain_supported, quotientQuotientEquivQuotientAux_mk_mk, Polynomial.map_taylorEquiv_degreeLT, restrictScalars_map, LinearIsometryEquiv.submoduleMap_apply_coe, comap_map_eq
orderIsoMapComap πŸ“–CompOp
4 mathmath: orderIsoMapComap_apply', orderIsoMapComap_symm_apply', orderIsoMapComap_symm_apply, orderIsoMapComap_apply
orderIsoMapComapOfBijective πŸ“–CompOp
2 mathmath: orderIsoMapComapOfBijective_symm_apply, orderIsoMapComapOfBijective_apply
submoduleOf πŸ“–CompOp
4 mathmath: submoduleOf_sup_of_le, LinearMap.submoduleOf_span_singleton_of_mem, submoduleOf_eq_top, submoduleOf_self
submoduleOfEquivOfLe πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_coe_mem_map πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
map
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”mem_map_of_mem
Subtype.prop
coe_equivMapOfInjective_apply πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
SetLike.instMembership
setLike
map
RingHomSurjective.invPair
LinearEquiv
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
equivMapOfInjective
β€”RingHomSurjective.invPair
comapSubtypeEquivOfLe_apply_coe πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
setLike
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
addCommMonoid
module
comap
subtype
EquivLike.toFunLike
LinearEquiv.instEquivLike
comapSubtypeEquivOfLe
β€”RingHomInvPair.ids
comapSubtypeEquivOfLe_symm_apply πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SetLike.instMembership
setLike
addCommMonoid
module
comap
subtype
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
comapSubtypeEquivOfLe
β€”RingHomInvPair.ids
comap_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
setLike
comap
Set.preimage
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”β€”
comap_comp πŸ“–mathematicalβ€”comap
LinearMap.comp
β€”β€”
comap_equiv_eq_map_symm πŸ“–mathematicalβ€”comap
LinearEquiv.toLinearMap
map
RingHomSurjective.invPair
LinearEquiv.symm
β€”RingHomSurjective.invPair
map_equiv_eq_comap_symm
comap_finsetInf πŸ“–mathematicalβ€”comap
Finset.inf
Submodule
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
instOrderTop
β€”Finset.inf_eq_iInf
comap_iInf
comap_iInf πŸ“–mathematicalβ€”comap
iInf
Submodule
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_iInf_map_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
comap
iInf
Submodule
instInfSet
map
β€”GaloisCoinsertion.u_iInf_l
comap_iSup_map_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
comap
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
β€”GaloisCoinsertion.u_iSup_l
comap_id πŸ“–mathematicalβ€”comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.id
β€”SetLike.coe_injective
comap_inf πŸ“–mathematicalβ€”comap
Submodule
instMin
β€”β€”
comap_inf_map_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
comap
Submodule
instMin
map
β€”GaloisCoinsertion.u_inf_l
comap_injective_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
comap
β€”GaloisInsertion.u_injective
comap_le_comap_iff_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
β€”GaloisInsertion.u_le_u_iff
comap_le_comap_smul πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
β€”smulCommClass_self
instIsConcreteLE
smul_mem
comap_lt_comap_iff_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
comap
β€”lt_iff_lt_of_le_iff_le'
comap_le_comap_iff_of_surjective
comap_lt_of_lt_map_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
map
comapβ€”map_lt_map_iff_of_injective
LE.le.trans_lt
map_comap_le
comap_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
comap
map
β€”GaloisCoinsertion.u_l_eq
comap_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comapβ€”Set.preimage_mono
comap_neg πŸ“–mathematicalβ€”comap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
LinearMap.instNeg
β€”ext
AddSubgroupClass.toNegMemClass
addSubgroupClass
comap_smul πŸ“–mathematicalβ€”comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
Semifield.toCommSemiring
DistribMulAction.toMulAction
CommMonoid.toMonoid
CommSemiring.toSemiring
β€”ext
smulCommClass_self
smul_mem_iff
IsScalarTower.left
comap_smul' πŸ“–mathematicalβ€”comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
Semifield.toCommSemiring
DistribMulAction.toMulAction
CommMonoid.toMonoid
CommSemiring.toSemiring
iInf
Submodule
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instInfSet
β€”smulCommClass_self
zero_smul
comap_zero
iInf_congr_Prop
iInf_neg
comap_smul
iInf_pos
comap_strictMono_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
StrictMono
Submodule
PartialOrder.toPreorder
instPartialOrder
comap
β€”GaloisInsertion.strictMono_u
comap_sup_map_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
comap
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
β€”GaloisCoinsertion.u_sup_l
comap_surjective_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
comap
β€”GaloisCoinsertion.u_surjective
comap_top πŸ“–mathematicalβ€”comap
Top.top
Submodule
instTop
β€”β€”
comap_zero πŸ“–mathematicalβ€”comap
LinearMap
LinearMap.instZero
Top.top
Submodule
instTop
β€”ext
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
disjoint_iff_comap_eq_bot πŸ“–mathematicalβ€”Disjoint
Submodule
instPartialOrder
instOrderBot
comap
SetLike.instMembership
setLike
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
subtype
Bot.bot
instBot
β€”RingHomSurjective.ids
map_injective_of_injective
Subtype.coe_injective
map_comap_subtype
map_bot
disjoint_iff
disjoint_map πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Disjoint
Submodule
instPartialOrder
instOrderBot
mapβ€”disjoint_iff
map_inf
map_bot
eq_zero_of_bot_submodule πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
Bot.bot
instBot
zero
β€”mem_bot
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
Submodule
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
inf_comap_le_comap_add πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMin
comap
LinearMap
LinearMap.instAdd
β€”instIsConcreteLE
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
addSubmonoidClass
le_comap_map πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
map
β€”GaloisConnection.le_u_l
gc_map_comap
le_comap_pow_of_le_comap πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
Monoid.toNatPow
Module.End.instMonoid
β€”pow_zero
comap_id
RingHomCompTriple.ids
Module.End.iterate_succ
LE.le.trans
comap_mono
le_map_of_comap_le_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
mapβ€”map_mono
map_comap_eq_of_surjective
lt_map_of_comap_lt_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
comap
mapβ€”lt_iff_le_not_ge
map_le_iff_le_comap
le_map_of_comap_le_of_surjective
map_add_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
LinearMap
LinearMap.instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”add_mem_sup
mem_map_of_mem
map_bot πŸ“–mathematicalβ€”map
Bot.bot
Submodule
instBot
β€”GaloisConnection.l_bot
gc_map_comap
map_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
setLike
map
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”β€”
map_comap_eq_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
comap
β€”GaloisInsertion.l_u_eq
map_comap_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”GaloisConnection.l_u_le
gc_map_comap
map_comap_subtype πŸ“–mathematicalβ€”map
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
subtype
comap
instMin
β€”ext
RingHomSurjective.ids
map_comp πŸ“–mathematicalβ€”map
LinearMap.comp
β€”SetLike.coe_injective
Set.image_congr
map_covBy_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
CovBy
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
mapβ€”lt_of_le_of_ne
map_mono
LT.lt.le
map_injective_of_injective
LT.lt.ne
map_lt_map_iff_of_injective
LT.lt.trans_le
Eq.superset
Set.instReflSubset
Set.image_preimage_eq_of_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_subset_range
comap_lt_of_lt_map_of_injective
map_eq_bot_iff πŸ“–mathematicalβ€”map
LinearEquiv.toLinearMap
Bot.bot
Submodule
instBot
β€”map_eq_bot_iff
OrderIso.instOrderIsoClass
map_eq_top_iff πŸ“–mathematicalβ€”map
LinearEquiv.toLinearMap
Top.top
Submodule
instTop
β€”map_eq_top_iff
OrderIso.instOrderIsoClass
map_equivMapOfInjective_symm_apply πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
SetLike.instMembership
setLike
LinearEquiv
map
RingHomSurjective.invPair
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
equivMapOfInjective
β€”RingHomSurjective.invPair
LinearEquiv.apply_symm_apply
coe_equivMapOfInjective_apply
map_equiv_eq_comap_symm πŸ“–mathematicalβ€”map
RingHomSurjective.invPair
LinearEquiv.toLinearMap
comap
LinearEquiv.symm
β€”ext
RingHomSurjective.invPair
mem_map_equiv
mem_comap
LinearEquiv.coe_coe
map_iInf πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
iInf
Submodule
instInfSet
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Function.Injective.injOn
map_iInf_comap_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
iInf
Submodule
instInfSet
comap
β€”GaloisInsertion.l_iInf_u
map_iSup πŸ“–mathematicalβ€”map
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_iSup_comap_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
comap
β€”GaloisInsertion.l_iSup_u
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.id
β€”ext
RingHomSurjective.ids
map_inf πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
Submodule
instMin
β€”SetLike.coe_injective
Set.image_inter
map_inf_comap_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
Submodule
instMin
comap
β€”GaloisInsertion.l_inf_u
map_inf_eq_map_inf_comap πŸ“–mathematicalβ€”Submodule
instMin
map
comap
β€”le_antisymm
le_inf
map_mono
inf_le_left
map_le_iff_le_comap
inf_le_right
map_inf_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
instMin
β€”Set.image_inter_subset
map_injective_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
map
β€”GaloisCoinsertion.l_injective
map_le_iff_le_comap πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_le_map_iff_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”GaloisCoinsertion.l_le_l_iff
map_lt_map_iff_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
map
β€”lt_iff_le_and_ne
map_le_map_iff_of_injective
map_injective_of_injective
map_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”Set.image_mono
map_ne_bot_iff πŸ“–β€”β€”β€”β€”β€”
map_ne_top_iff πŸ“–β€”β€”β€”β€”β€”
map_neg πŸ“–mathematicalβ€”map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instNeg
β€”ext
RingHomSurjective.ids
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
addSubgroupClass
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
neg_neg
map_smul πŸ“–mathematicalβ€”map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
Semifield.toCommSemiring
DistribMulAction.toMulAction
CommMonoid.toMonoid
CommSemiring.toSemiring
β€”le_antisymm
RingHomSurjective.ids
smulCommClass_self
map_le_iff_le_comap
comap_smul
le_refl
map_smul' πŸ“–mathematicalβ€”map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
Semifield.toCommSemiring
DistribMulAction.toMulAction
CommMonoid.toMonoid
CommSemiring.toSemiring
iSup
Submodule
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”RingHomSurjective.ids
smulCommClass_self
map.congr_simp
zero_smul
map_zero
iSup_congr_Prop
iSup_neg
map_smul
iSup_pos
map_strictMono_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
StrictMono
Submodule
PartialOrder.toPreorder
instPartialOrder
map
β€”GaloisCoinsertion.strictMono_l
map_sup πŸ“–mathematicalβ€”map
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”GaloisConnection.l_sup
gc_map_comap
map_sup_comap_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
map
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
comap
β€”GaloisInsertion.l_sup_u
map_surjective_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
map
β€”GaloisInsertion.l_surjective
map_symm_eq_iff πŸ“–mathematicalβ€”map
RingHomSurjective.invPair
LinearEquiv.toLinearMap
LinearEquiv.symm
β€”RingHomSurjective.invPair
map_equiv_eq_comap_symm
OrderIso.symm_apply_eq
map_toAddSubgroup πŸ“–mathematicalβ€”toAddSubgroup
map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
AddSubgroup.map
AddCommGroup.toAddGroup
AddMonoidHomClass.toAddMonoidHom
LinearMap
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
LinearMap.instFunLike
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
β€”RingHomSurjective.ids
map_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
map
AddSubmonoid.map
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
AddMonoidHom.instAddMonoidHomClass
AddMonoidHomClass.toAddMonoidHom
LinearMap
LinearMap.instFunLike
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
β€”SetLike.coe_injective
AddMonoidHom.instAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_toAddSubmonoid' πŸ“–mathematicalβ€”toAddSubmonoid
map
AddSubmonoid.map
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap
LinearMap.instFunLike
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
β€”SetLike.coe_injective
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_zero πŸ“–mathematicalβ€”map
LinearMap
LinearMap.instZero
Bot.bot
Submodule
instBot
β€”zero_mem
ext
mem_comap πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
comap
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”β€”
mem_map πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
map
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”β€”
mem_map_equiv πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
map
RingHomSurjective.invPair
LinearEquiv.toLinearMap
DFunLike.coe
LinearEquiv
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
β€”RingHomSurjective.invPair
mem_map
LinearEquiv.symm_apply_apply
LinearEquiv.apply_symm_apply
mem_map_of_mem πŸ“–mathematicalSubmodule
SetLike.instMembership
setLike
map
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”Set.mem_image_of_mem
orderIsoMapComapOfBijective_apply πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
LinearMap.instFunLike
RelIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
orderIsoMapComapOfBijective
map
β€”β€”
orderIsoMapComapOfBijective_symm_apply πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
LinearMap.instFunLike
RelIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoMapComapOfBijective
comap
β€”β€”
orderIsoMapComap_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
orderIsoMapComap
map
LinearEquiv.toLinearMap
β€”β€”
orderIsoMapComap_apply' πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
orderIsoMapComap
RingHomSurjective.invPair
comap
LinearEquiv.toLinearMap
LinearEquiv.symm
β€”map_equiv_eq_comap_symm
orderIsoMapComap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
OrderIso.symm
orderIsoMapComap
comap
LinearEquiv.toLinearMap
β€”β€”
orderIsoMapComap_symm_apply' πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
OrderIso.symm
orderIsoMapComap
RingHomSurjective.invPair
map
LinearEquiv.toLinearMap
LinearEquiv.symm
β€”comap_equiv_eq_map_symm
range_map_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Submodule
Set.range
LinearMap
map
β€”Set.mem_range
surjOn_iff_le_map πŸ“–mathematicalβ€”Set.SurjOn
DFunLike.coe
LinearMap
LinearMap.instFunLike
SetLike.coe
Submodule
setLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”β€”

Submodule.AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toIntLinearMap_comap πŸ“–mathematicalβ€”Submodule.comap
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
RingHom.id
Semiring.toNonAssocSemiring
AddMonoidHom.toIntLinearMap
DFunLike.coe
OrderIso
AddSubgroup
AddCommGroup.toAddGroup
Submodule
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderIso
AddSubgroup.toIntSubmodule
AddSubgroup.comap
β€”β€”

---

← Back to Index