| Name | Category | Theorems |
involutivePointwiseNeg 📖 | CompOp | — |
negOrderIso 📖 | CompOp | — |
pointwiseAdd 📖 | CompOp | 16 mathmath: HomogeneousIdeal.toIdeal_add, LinearDisjoint.op, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, equivOpposite_apply, FractionalIdeal.coe_add, Ideal.add_eq_one_iff, Ideal.isCoprime_tfae, instCanonicallyOrderedAdd, linearDisjoint_op, Ideal.add_eq_sup, Ideal.isCoprime_iff_add, equivOpposite_symm_apply, mulMap_op, add_eq_sup, IsCoprime.add_eq
|
pointwiseAddCommMonoid 📖 | CompOp | 65 mathmath: smul_def, RingTheory.Sequence.isWeaklyRegular_cons_iff', RingTheory.Sequence.isWeaklyRegular_cons_iff, Ideal.sum_eq_sup, QuotSMulTop.equivTensorQuot_naturality, ideal_span_singleton_smul, top_eq_ofList_cons_smul_iff, ZSpan.smul, RingTheory.Sequence.isRegular_cons_iff, QuotSMulTop.equivTensorQuot_naturality_mk, smul_iSup', QuotSMulTop.map_comp_mkQ, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, pointwise_smul_toAddSubgroup, ModuleCat.smulShortComplex_X₃_isAddCommGroup, smul_bot', smul_mem_pointwise_smul, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, element_smul_restrictScalars, smul_sup', QuotSMulTop.map_surjective, smul_le_self_of_tower, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, pointwise_smul_toAddSubmonoid, ModuleCat.smulShortComplex_g, coe_pointwise_smul, IsLattice.smul, smul_le_smul, smul_top_inf_eq_smul_of_isSMulRegular_on_quot, mem_colon_iff_le, QuotSMulTop.equivQuotTensor_naturality, LinearMap.exact_smul_id_smul_top_mkQ, instCovariantClassHSMulLe, quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, singleton_smul, QuotSMulTop.map_exact, Module.supportDim_quotSMulTop_succ_eq_supportDim, mem_smul_pointwise_iff_exists, singleton_set_smul, Module.supportDim_le_supportDim_quotSMulTop_succ, QuotSMulTop.equivQuotTensor_naturality_mk, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, SubmodulesRingBasis.leftMul, Module.support_quotSMulTop, span_smul, map_pointwise_smul, set_smul_eq_iSup, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, Ideal.ofList_cons_smul, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, QuotSMulTop.map_comp, IsSMulRegular.isSMulRegular_on_quot_iff_smul_top_inf_eq_smul, smul_span, QuotSMulTop.map_apply_mk, setSemiring_smul_def, ModuleCat.smulShortComplex_X₃_isModule, instIsOrderedAddMonoid, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, QuotSMulTop.map_id, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, RingTheory.Sequence.isRegular_cons_iff', isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, Module.isTorsionBy_quotient_element_smul, pointwiseCentralScalar, exists_sub_one_mem_and_smul_le_of_fg_of_le_sup
|
pointwiseDistribMulAction 📖 | CompOp | 82 mathmath: smul_def, RingTheory.Sequence.isWeaklyRegular_cons_iff', RingTheory.Sequence.isWeaklyRegular_cons_iff, QuotSMulTop.equivTensorQuot_naturality, ideal_span_singleton_smul, top_eq_ofList_cons_smul_iff, BoxIntegral.unitPartition.mem_smul_span_iff, ZSpan.smul, RingTheory.Sequence.isRegular_cons_iff, QuotSMulTop.equivTensorQuot_naturality_mk, smul_iSup', QuotSMulTop.map_comp_mkQ, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, pointwise_smul_toAddSubgroup, ModuleCat.smulShortComplex_X₃_isAddCommGroup, smul_bot', smul_mem_pointwise_smul, instSMulCommClass, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, element_smul_restrictScalars, smul_sup', QuotSMulTop.map_surjective, mul_mem_smul_iff, smul_le_self_of_tower, mem_smul_iff_inv_mul_mem, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, spinGroup.conjAct_smul_range_ι, Ideal.Quotient.smul_top, pointwise_smul_toAddSubmonoid, traceForm_dualSubmodule_adjoin, ModuleCat.smulShortComplex_g, coe_pointwise_smul, IsLattice.smul, smul_top_inf_eq_smul_of_isSMulRegular_on_quot, Ideal.exact_mulQuot_quotOfMul, mem_colon_iff_le, QuotSMulTop.equivQuotTensor_naturality, LinearMap.exact_smul_id_smul_top_mkQ, instCovariantClassHSMulLe, quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, mul_smul_mul_eq_smul_mul_smul, pinGroup.conjAct_smul_range_ι, QuotSMulTop.map_exact, Module.supportDim_quotSMulTop_succ_eq_supportDim, mem_smul_pointwise_iff_exists, Ideal.quotOfMul_surjective, singleton_set_smul, FractionalIdeal.den_mul_self_eq_num, Module.supportDim_le_supportDim_quotSMulTop_succ, QuotSMulTop.equivQuotTensor_naturality_mk, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, SubmodulesRingBasis.leftMul, Module.support_quotSMulTop, smul_one_eq_span, span_smul, map_pointwise_smul, set_smul_eq_iSup, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, Ideal.ofList_cons_smul, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, QuotSMulTop.map_comp, span_singleton_mul, IsSMulRegular.isSMulRegular_on_quot_iff_smul_top_inf_eq_smul, smul_span, QuotSMulTop.map_apply_mk, instSMulCommClass_1, ModuleCat.smulShortComplex_X₃_isModule, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, Subalgebra.pointwise_smul_toSubmodule, QuotSMulTop.map_id, Ideal.map_pointwise_smul, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, RingTheory.Sequence.isRegular_cons_iff', lipschitzGroup.conjAct_smul_range_ι, isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, Module.isTorsionBy_quotient_element_smul, BoxIntegral.unitPartition.tag_mem_smul_span, pointwiseCentralScalar, instIsScalarTower, exists_sub_one_mem_and_smul_le_of_fg_of_le_sup, Ideal.mulQuot_injective
|
pointwiseMulActionWithZero 📖 | CompOp | — |
pointwiseNeg 📖 | CompOp | 13 mathmath: neg_top, neg_sup, neg_iSup, neg_bot, neg_iInf, neg_eq_self, neg_inf, neg_toAddSubmonoid, coe_set_neg, span_neg_eq_neg, mem_neg, neg_le_neg, neg_le
|
pointwiseSetDistribMulAction 📖 | CompOp | — |
pointwiseSetMulAction 📖 | CompOp | — |
pointwiseSetSMul 📖 | CompOp | 23 mathmath: set_smul_le_iff, set_smul_span, Module.isTorsionBySet_quotient_set_smul, set_smul_mono_left, coe_span_smul, mem_set_smul_def, mem_singleton_set_smul, set_smul_eq_map, mem_set_smul_of_mem_mem, span_set_smul, empty_set_smul, singleton_set_smul, set_smul_le_of_le_le, set_smul_eq_iSup, set_smul_bot, span_smul_eq, coe_set_smul, mem_set_smul, sup_set_smul, set_smul_top_eq_span, smul_le_span, set_smul_le, instCovariantClassSetHSMulLe
|
pointwiseZero 📖 | CompOp | 21 mathmath: Valuation.supp_quot_supp, nilradical_eq_zero, instPosMulStrictMonoIdeal, IsSemiprimaryRing.isNilpotent, FractionalIdeal.num_zero_eq, Ideal.zero_eq_bot, Ideal.isCancelMulZero, IsNoetherianRing.isNilpotent_nilradical, IsArtinianRing.isNilpotent_jacobson_bot, Ideal.FG.isNilpotent_iff_le_nilradical, isArtinianRing_iff_isNilpotent_maximalIdeal, FractionalIdeal.instPosMulReflectLEIdealOfIsDedekindDomain, zero_eq_bot, instMulPosStrictMonoIdeal, Ideal.instNoZeroDivisors, Ideal.associatesEquivIsPrincipal_map_zero, isSemiprimaryRing_iff, IsArtinianRing.isNilpotent_nilradical, FractionalIdeal.num_eq_zero_iff, AddValuation.supp_quot_supp, PointedCone.dual_univ
|