Documentation Verification Report

RestrictScalars

πŸ“ Source: Mathlib/Algebra/Module/Submodule/RestrictScalars.lean

Statistics

MetricCount
DefinitionsrestrictScalars, origModule, restrictScalarsEmbedding, restrictScalarsEquiv, restrictScalarsLatticeHom
5
Theoremscoe_restrictScalars, isScalarTower, restrictScalarsEmbedding_apply, restrictScalarsEquiv_apply, restrictScalarsEquiv_symm_apply, restrictScalars_bot, restrictScalars_eq_bot_iff, restrictScalars_eq_top_iff, restrictScalars_iInf, restrictScalars_iSup, restrictScalars_inf, restrictScalars_inj, restrictScalars_injective, restrictScalars_le, restrictScalars_lt, restrictScalars_mem, restrictScalars_mono, restrictScalars_monotone, restrictScalars_sInf, restrictScalars_sSup, restrictScalars_self, restrictScalars_sup, restrictScalars_top, toAddSubmonoid_restrictScalars, toIntSubmodule_toAddSubgroup
25
Total30

Submodule

Definitions

NameCategoryTheorems
restrictScalars πŸ“–CompOp
79 mathmath: Algebra.idealMap_eq_ofEq_comp_toLocalizedβ‚€, Ideal.finrank_eq_finrank, Ideal.smul_top_eq_map, Algebra.Extension.H1Cotangent.equiv_apply, FG.restrictScalars_of_surjective, restrictScalars_eq_bot_iff, restrictScalars_monotone, restrictScalars_mul, restrictScalars_bot, Ideal.range_cotangentToQuotientSquare, LinearMap.ker_localizedMap_eq_localized'_ker, restrictScalars_top, LinearMap.ker_restrictScalars, span_range_inclusion_restrictScalars_eq_top, FG.restrictScalars, element_smul_restrictScalars, Ideal.range_mul, traceDual_top', Ideal.map_includeRight_eq, span_le_restrictScalars, restrictScalars_lt, le_spanRank_restrictScalars, FG.restrictScalars_iff, differentialIdeal_le_iff, restrictScalars_le, coe_restrictScalars, spanRank_restrictScalars_eq, fg_restrictScalars, KaehlerDifferential.ker_map, toIntSubmodule_toAddSubgroup, traceDual_le_span_map_traceDual, restrictScalars_sSup, restrictScalarsEquiv_symm_apply, Ideal.coe_restrictScalars, Quotient.restrictScalarsEquiv_symm_mk, restrictScalars_traceDual, differentialIdeal_le_fractionalIdeal_iff, Ideal.localizedβ‚€_eq_restrictScalars_map, KaehlerDifferential.kerTotal_map, restrictScalars_mono, derivationToSquareZeroEquivLift_symm_apply_apply_coe, MvPolynomial.restrictScalars_restrictSupportIdeal, restrictScalars_inj, restrictScalars_sup, KaehlerDifferential.submodule_span_range_eq_ideal, restrictScalars_injective, Ideal.restrictScalars_mul, Algebra.Extension.Hom.subToKer_apply_coe, traceDual_eq_span_map_traceDual_of_linearDisjoint, Ideal.smul_restrictScalars, Algebra.Extension.H1Cotangent.map_apply_coe, restrictScalars_mem, restrictScalars.isScalarTower, toAddSubmonoid_restrictScalars, restrictScalars_iSup, Subalgebra.restrictScalars_toSubmodule, restrictScalars_iInf, restrictScalars_eq_top_iff, KaehlerDifferential.range_kerCotangentToTensor, restrictScalarsEmbedding_apply, restrictScalars_localized', Polynomial.ker_modByMonicHom, restrictScalars_sInf, Algebra.idealMap_apply_coe, le_traceDual_iff_map_le_one, KaehlerDifferential.kerTotal_map', Ideal.map_includeLeft_eq, restrictScalars_pow, Algebra.Generators.H1Cotangent.equiv_apply, Quotient.restrictScalarsEquiv_mk, LinearMap.range_restrictScalars, restrictScalars_self, restrictScalars_inf, restrictScalars_localized'_smul, span_coe_eq_restrictScalars, restrictScalarsEquiv_apply, span_smul_of_span_eq_top, restrictScalars_map, restrictScalars_span
restrictScalarsEmbedding πŸ“–CompOp
1 mathmath: restrictScalarsEmbedding_apply
restrictScalarsEquiv πŸ“–CompOp
2 mathmath: restrictScalarsEquiv_symm_apply, restrictScalarsEquiv_apply
restrictScalarsLatticeHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_restrictScalars πŸ“–mathematicalβ€”SetLike.coe
Submodule
setLike
restrictScalars
β€”β€”
restrictScalarsEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelEmbedding.instFunLike
restrictScalarsEmbedding
restrictScalars
β€”β€”
restrictScalarsEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
SetLike.instMembership
setLike
restrictScalars
addCommMonoid
restrictScalars.origModule
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
restrictScalarsEquiv
β€”RingHomInvPair.ids
restrictScalarsEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
SetLike.instMembership
setLike
restrictScalars
addCommMonoid
module
restrictScalars.origModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
restrictScalarsEquiv
β€”RingHomInvPair.ids
restrictScalars_bot πŸ“–mathematicalβ€”restrictScalars
Bot.bot
Submodule
instBot
β€”β€”
restrictScalars_eq_bot_iff πŸ“–mathematicalβ€”restrictScalars
Bot.bot
Submodule
instBot
β€”β€”
restrictScalars_eq_top_iff πŸ“–mathematicalβ€”restrictScalars
Top.top
Submodule
instTop
β€”β€”
restrictScalars_iInf πŸ“–mathematicalβ€”restrictScalars
iInf
Submodule
instInfSet
β€”ext
restrictScalars_iSup πŸ“–mathematicalβ€”restrictScalars
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”map_iSup
FrameHomClass.tosSupHomClass
CompleteLatticeHomClass.toFrameHomClass
CompleteLatticeHom.instCompleteLatticeHomClass
restrictScalars_inf πŸ“–mathematicalβ€”restrictScalars
Submodule
instMin
β€”ext
restrictScalars_inj πŸ“–mathematicalβ€”restrictScalarsβ€”restrictScalars_injective
restrictScalars_injective πŸ“–mathematicalβ€”Submodule
restrictScalars
β€”ext
Set.ext_iff
SetLike.ext'_iff
restrictScalars_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalars
β€”β€”
restrictScalars_lt πŸ“–mathematicalβ€”Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
restrictScalars
β€”β€”
restrictScalars_mem πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
restrictScalars
β€”β€”
restrictScalars_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalarsβ€”restrictScalars_monotone
restrictScalars_monotone πŸ“–mathematicalβ€”Monotone
Submodule
PartialOrder.toPreorder
instPartialOrder
restrictScalars
β€”OrderEmbedding.monotone
restrictScalars_sInf πŸ“–mathematicalβ€”restrictScalars
InfSet.sInf
Submodule
instInfSet
Set.image
β€”ext
restrictScalars_sSup πŸ“–mathematicalβ€”restrictScalars
SupSet.sSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set.image
β€”toAddSubmonoid_sSup
Set.image_congr
restrictScalars_self πŸ“–mathematicalβ€”restrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”SetLike.coe_injective
IsScalarTower.left
restrictScalars_sup πŸ“–mathematicalβ€”restrictScalars
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”restrictScalars.congr_simp
sSup_insert
sSup_singleton
Set.image_insert_eq
Set.image_singleton
restrictScalars_sSup
restrictScalars_top πŸ“–mathematicalβ€”restrictScalars
Top.top
Submodule
instTop
β€”β€”
toAddSubmonoid_restrictScalars πŸ“–mathematicalβ€”toAddSubmonoid
restrictScalars
β€”β€”
toIntSubmodule_toAddSubgroup πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
AddSubgroup
AddCommGroup.toAddGroup
Submodule
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
instPartialOrder
instFunLikeOrderIso
AddSubgroup.toIntSubmodule
toAddSubgroup
restrictScalars
Ring.toSemiring
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddCommGroup.intIsScalarTower
β€”β€”

Submodule.restrictScalars

Definitions

NameCategoryTheorems
origModule πŸ“–CompOp
5 mathmath: Submodule.span_range_inclusion_restrictScalars_eq_top, Submodule.span_range_inclusion_eq_top, Submodule.restrictScalarsEquiv_symm_apply, isScalarTower, Submodule.restrictScalarsEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.restrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule.addCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
origModule
Submodule.smul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.left
DistribMulAction.toMulAction
β€”IsScalarTower.left
smul_assoc

---

← Back to Index