Documentation Verification Report

Free

πŸ“ Source: Mathlib/Algebra/Module/Torsion/Free.lean

Statistics

MetricCount
DefinitionsFree, IsTorsionFree
2
Theoremsof_isAddTorsionFree, moduleIsTorsionFree, of_isDomain_charZero, of_isTorsionFree, to_isTorsionFree_nat, isSMulRegular, smul_eq_zero_iff_right, smul_ne_zero_iff_right, smul_right_inj, smul_right_injective, of_ne_zero, comap, isSMulRegular, of_smul_eq_zero, trans, isTorsionFree_iff_smul_eq_zero, isTorsionFree_int_iff_isAddTorsionFree, isTorsionFree_nat_iff_isAddTorsionFree, to_moduleIsTorsionFree, instIsTorsionFree, instIsTorsionFreeIntOfIsAddTorsionFree, instIsTorsionFreeMulOpposite, smul_eq_zero, smul_eq_zero_iff_left, smul_eq_zero_iff_right, smul_left_inj, smul_left_injective, smul_ne_zero, smul_ne_zero_iff, smul_ne_zero_iff_left, smul_ne_zero_iff_right, smul_right_inj, smul_right_injective
33
Total35

CharZero

Theorems

NameKindAssumesProvesValidatesDepends On
of_isAddTorsionFree πŸ“–mathematicalβ€”CharZero
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”exists_ne
natCast_zsmul
Nat.cast_smul_eq_nsmul
Int.instCharZero
smul_left_injective
Int.instIsCancelMulZero
instIsTorsionFreeIntOfIsAddTorsionFree

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
moduleIsTorsionFree πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.IsTorsionFreeβ€”IsRegular.isSMulRegular

IsAddTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
of_isDomain_charZero πŸ“–mathematicalβ€”IsAddTorsionFree
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”of_isTorsionFree
instIsTorsionFree
of_isTorsionFree πŸ“–mathematicalβ€”IsAddTorsionFree
AddCommMonoid.toAddMonoid
β€”Nat.cast_smul_eq_nsmul
smul_right_injective
to_isTorsionFree_nat πŸ“–mathematicalβ€”Module.IsTorsionFree
Nat.instSemiring
AddCommMonoid.toNatModule
β€”nsmul_right_injective
Nat.instIsCancelMulZero
Nat.instNontrivial

IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
isSMulRegular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Module.IsTorsionFree.isSMulRegular
smul_eq_zero_iff_right πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smul_zero
smul_ne_zero_iff_right πŸ“–β€”IsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”Iff.ne
smul_eq_zero_iff_right
smul_right_inj πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smul_right_injective
smul_right_injective πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”isSMulRegular

IsSMulRegular

Theorems

NameKindAssumesProvesValidatesDepends On
of_ne_zero πŸ“–mathematicalβ€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”IsRegular.isSMulRegular
IsRegular.of_ne_zero

Module

Definitions

NameCategoryTheorems
Free πŸ“–CompData
85 mathmath: Free.finsupp, Polynomial.degreeLT.instFreeSubtypeMemSubmodule, Polynomial.Monic.free_quotient, free_iff_set, Relations.Solution.IsPresentation.free, NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, Subalgebra.LinearDisjoint.sup_free_of_free, Invertible.free_iff_linearEquiv, free_of_flat_of_finrank_eq, LocallyConstant.freeOfProfinite, Quaternion.instFree, exteriorPower.instFree, FreeAlgebra.instFree, CommRing.Pic.instFreeOfSubsingleton, MvPolynomial.instFree, FinitePresentation.equiv_quotient, QuadraticAlgebra.instFree, SymmetricAlgebra.instModuleFree, Free.addMonoidHom, MulOpposite.instFree, free_iff_exists_presentation, MonoidAlgebra.instFree, QuaternionAlgebra.instFree, CommRing.Pic.subsingleton_iff, TensorAlgebra.instModuleFree, Free.prod, dual_free, Free.Module.free_shrink, Free.of_subsingleton', CommRing.Pic.instFreeAsModuleOfNat, Free.linearMap, Free.of_det_ne_one, FinitePresentation.exists_free_localizedModule_powers, Algebra.TensorProduct.instFree, free_of_finite_type_torsion_free', ZLattice.module_free, SkewMonoidAlgebra.instFree, Free.tensor, free_of_isLocalizedModule, free_of_finite_type_torsion_free, free_of_maximalIdeal_rTensor_injective, mem_freeLocus_iff_tensor, Free.of_equiv', LinearMap.free_of_det_ne_one, NumberField.RingOfIntegers.instFreeInt, Submodule.IsLattice.free, Profinite.NobelingProof.Nobeling_aux, Free.of_basis, Free.of_subsingleton, IsBaseChange.free, Algebra.SubmersivePresentation.free_kaehlerDifferential, ModuleCat.free_shortExact, Free.matrix, CommRing.Pic.mk_eq_one_iff_free, Free.of_ringEquiv, Free.of_equiv, Polynomial.instFree, free_def, Free.self, Free.of_divisionRing, AddMonoidAlgebra.instFree, Free.trans, Algebra.IsStandardSmooth.free_kaehlerDifferential, mem_freeLocus_of_isLocalization, instFreeSubtypeMemIdealOfFiniteOfIsTorsionFree, FreeAbelianGroup.instFreeInt, Algebra.Generators.instFreeCotangentSpaceToExtension, Algebra.SubmersivePresentation.free_cotangent, mem_freeLocus, Representation.free_asModule_free, Free.iff_of_ringEquiv, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, Polynomial.Monic.free_adjoinRoot, instModuleFree_of_discrete_submodule, IsIntegralClosure.module_free, Free.ulift, instFreeCarrierXβ‚‚ModuleCatProjectiveShortComplex, free_of_flat_of_isLocalRing, Algebra.IsQuadraticExtension.toFree, instFreeMvPolynomialKaehlerDifferential, free_iff_isTorsionFree, Free.function, CommRing.Pic.subsingleton_iffβ‚›, free_of_lTensor_residueField_injective, NumberField.Units.instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion
IsTorsionFree πŸ“–CompData
66 mathmath: isTorsionFree_int_iff_isAddTorsionFree, LinearMap.instIsTorsionFree, Ring.instIsTorsionFreeNormalClosure, instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing, NumberField.RingOfIntegers.instIsTorsionFree_1, Subalgebra.instIsTorsionFree', instIsTorsionFree, instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors, AlternatingMap.instIsTorsionFree, Prod.moduleIsTorsionFree, NoZeroSMulDivisors.iff_faithfulSMul, AddMonoidAlgebra.instIsTorsionFree, NumberField.RingOfIntegers.instIsTorsionFree_2, Subalgebra.instIsTorsionFree, QuaternionAlgebra.instIsTorsionFree, IsTorsionFree.of_faithfulSMul, LieSubmodule.instIsTorsionFreeSubtypeMem, NonUnitalStarSubalgebra.instIsTorsionFree, IsLocalizedModule.isTorsionFree, isTorsionFree_nat_iff_isAddTorsionFree, IsReflexive.to_isTorsionFree, CyclotomicRing.instIsTorsionFreeOfIsDomainOfIsFractionRing, instIsTorsionFreeMulOpposite, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Basis.isTorsionFree, IsTorsionFree.comap, IsIntegralClosure.isTorsionFree, Subsingleton.to_moduleIsTorsionFree, Polynomial.IsSplittingField.instIsTorsionFreeSplittingField, Ideal.instIsTorsionFreeSubtypeMemSubmodule, isTorsionFree_iff_algebraMap_injective, MultilinearMap.instIsTorsionFree, NumberField.RingOfIntegers.instIsTorsionFree, instIsTorsionFreeLocalizationAlgebraMapSubmonoidPrimeCompl_1, Polynomial.instIsTorsionFree, NoZeroSMulDivisors.iff_algebraMap_injective, Valuation.HasExtension.instIsTorsionFreeInteger, Localization.instIsTorsionFreeAtPrimeAlgebraMapSubmonoidPrimeComplOfIsDomain, isTorsionFree_iff_faithfulSMul, instIsTorsionFreeLocalizationAlgebraMapSubmonoidPrimeCompl, Submodule.QuotientTorsion.instIsTorsionFree, AdjoinRoot.noZeroSMulDivisors_of_prime_of_degree_ne_zero, IsLocalizedModule.isTorsionFree_of_forall_isRegular, isTorsionFree_iff_smul_eq_zero, NonUnitalSubalgebra.instIsTorsionFree, Submodule.instIsTorsionFree, IsTorsionFree.trans, IsTorsionFree.of_isLocalization, DivisionSemiring.to_moduleIsTorsionFree, MonoidAlgebra.instIsTorsionFree, Submodule.isTorsionFree_iff_torsion_eq_bot, CyclotomicRing.instIsTorsionFreeCyclotomicField, Function.Injective.moduleIsTorsionFree, QuadraticAlgebra.instIsTorsionFree, Finsupp.moduleIsTorsionFree, instIsTorsionFreeLocalizationAlgebraMapSubmonoidPrimeCompl_2, IsTorsionFree.trans_faithfulSMul, HahnModule.instIsTorsionFree, IsLocalizedModule.instIsTorsionFreeLocalizationLocalizedModuleOfIsDomain, instIsTorsionFreeIntOfIsAddTorsionFree, free_iff_isTorsionFree, Free.instIsTorsionFree, MeasureTheory.Measure.instModuleIsTorsionFree, IsTorsionFree.of_smul_eq_zero, IsAddTorsionFree.to_isTorsionFree_nat, FaithfulSMul.to_isTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
isTorsionFree_iff_smul_eq_zero πŸ“–mathematicalβ€”IsTorsionFree
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”smul_eq_zero
IsDomain.toIsCancelMulZero
IsTorsionFree.of_smul_eq_zero
IsDomain.toNontrivial
isTorsionFree_int_iff_isAddTorsionFree πŸ“–mathematicalβ€”IsTorsionFree
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
IsAddTorsionFree
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsAddTorsionFree.of_isTorsionFree
Int.instIsCancelMulZero
Int.instCharZero
instIsTorsionFreeIntOfIsAddTorsionFree
isTorsionFree_nat_iff_isAddTorsionFree πŸ“–mathematicalβ€”IsTorsionFree
Nat.instSemiring
AddCommMonoid.toNatModule
IsAddTorsionFree
AddCommMonoid.toAddMonoid
β€”IsAddTorsionFree.of_isTorsionFree
Nat.instIsCancelMulZero
Nat.instCharZero
IsAddTorsionFree.to_isTorsionFree_nat

Module.IsTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.IsTorsionFreeβ€”IsSMulRegular.of_map
IsRegular.isSMulRegular
isSMulRegular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
of_smul_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.IsTorsionFree
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”IsRegular.ne_zero
smul_sub
trans πŸ“–mathematicalβ€”Module.IsTorsionFreeβ€”IsRegular.isSMulRegular
smul_one_mul
mul_smul_one
smul_assoc
one_smul

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
to_moduleIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFreeβ€”Function.injective_of_subsingleton

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsRegular.left
instIsTorsionFreeIntOfIsAddTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
β€”zsmul_right_injective
Int.instIsCancelMulZero
Int.instNontrivial
instIsTorsionFreeMulOpposite πŸ“–mathematicalβ€”Module.IsTorsionFree
MulOpposite
MulOpposite.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toOppositeModule
β€”IsRegular.right
IsRegular.unop
smul_eq_zero πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_or_ne
zero_smul
smul_eq_zero_iff_left πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
smul_eq_zero_iff_right πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”IsRegular.smul_eq_zero_iff_right
IsRegular.of_ne_zero
smul_left_inj πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”smul_left_injective
smul_left_injective πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”sub_eq_zero
smul_eq_zero_iff_left
sub_smul
smul_ne_zero πŸ“–β€”β€”β€”β€”β€”
smul_ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
smul_ne_zero_iff_left πŸ“–β€”β€”β€”β€”β€”
smul_ne_zero_iff_right πŸ“–β€”β€”β€”β€”Iff.ne
smul_eq_zero_iff_right
smul_right_inj πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”IsRegular.of_ne_zero
smul_right_injective πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”IsRegular.smul_right_injective
IsRegular.of_ne_zero

---

← Back to Index