| Name | Category | Theorems |
algebra 📖 | CompOp | 82 mathmath: mapRangeAlgEquiv_trans, lift_apply', domCongr_comp_lsingle, symm_mapRangeAlgEquiv, algHom_ext'_iff, LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, mapRangeAlgHom_single, domCongr_toAlgHom, lift_mapRangeRingHom_algebraMap, mapDomainBialgHom_id, mapDomainAlgHom_id, mapRangeRingHom_comp_algebraMap, LaurentPolynomial.algebraMap_apply, mapDomainRingHom_comp_algebraMap, mapDomainBialgHom_mapDomainBialgHom, BoundedContinuousFunction.charAlgHom_apply, domCongr_refl, decomposeAux_coe, mvPolynomial_aeval_of_surjective_of_closure, tensorEquiv.invFun_tmul, Polynomial.ofFinsupp_algebraMap, commAlgEquiv_single_single, isLocalHom_algebraMap, lift_apply, domCongr_single, mapDomainBialgHom_apply, coe_algebraMap, mapRangeAlgEquiv_apply, finiteType_of_fg, addMonoidAlgebraAlgEquivDirectSum_symm_apply, finiteType_iff_group_fg, instIsPushout, instIsPushout', lift_single, mapDomainAlgHom_apply, lift_symm_apply, coe_liftNCAlgHom, lift_of, LaurentPolynomial.C_eq_algebraMap, mapDomain_algebraMap, exists_finset_adjoin_eq_top, lift_unique', toRingHom_mapRangeAlgHom, tensorEquiv_tmul, Polynomial.toFinsupp_algebraMap, LaurentPolynomial.invert_symm, symm_commAlgEquiv, mapDomainAlgHom_comp, tensorEquiv_symm_single, lift_of', mem_adjoin_support, Polynomial.toFinsuppIsoAlg_symm_apply_toFinsupp, domCongr_support, curryAlgEquiv_symm_single, domCongr_symm, algHom_ext_iff, LaurentPolynomial.invert_apply, mapDomainBialgHom_comp, scalarTensorEquiv_symm_single, Polynomial.toFinsuppIsoAlg_apply, finiteType_iff_fg, domCongr_apply, decomposeAux_single, decomposeAux_eq_decompose, lift_unique, lift_def, singleZeroAlgHom_apply, Polynomial.coe_toLaurentAlg, scalarTensorEquiv_tmul, LieAlgebra.LoopAlgebra.twoCocycleOfBilinear_coe, Polynomial.toLaurentAlg_apply, LaurentPolynomial.toLaurent_reverse, addMonoidAlgebraAlgEquivDirectSum_apply, isLocalHom_singleZeroAlgHom, LaurentPolynomial.invert_C, curryAlgEquiv_single, mapRangeAlgHom_apply, LaurentPolynomial.invert_comp_C, freeAlgebra_lift_of_surjective_of_closure, LaurentPolynomial.invert_T, vaddAssocClass_addMonoidAlgebra, LaurentPolynomial.involutive_invert
|
algebraAddMonoidAlgebra 📖 | CompOp | 4 mathmath: algebraMap_def, instIsPushout, instIsPushout', vaddAssocClass_addMonoidAlgebra
|
commAlgEquiv 📖 | CompOp | 2 mathmath: commAlgEquiv_single_single, symm_commAlgEquiv
|
curryAlgEquiv 📖 | CompOp | 2 mathmath: curryAlgEquiv_symm_single, curryAlgEquiv_single
|
domCongr 📖 | CompOp | 7 mathmath: domCongr_comp_lsingle, domCongr_toAlgHom, domCongr_refl, domCongr_single, domCongr_support, domCongr_symm, domCongr_apply
|
liftMagma 📖 | CompOp | 2 mathmath: liftMagma_apply_apply, liftMagma_symm_apply
|
liftNCAlgHom 📖 | CompOp | 1 mathmath: coe_liftNCAlgHom
|
mapDomainAlgHom 📖 | CompOp | 4 mathmath: domCongr_toAlgHom, mapDomainAlgHom_id, mapDomainAlgHom_apply, mapDomainAlgHom_comp
|
mapDomainNonUnitalAlgHom 📖 | CompOp | 1 mathmath: mapDomainNonUnitalAlgHom_apply
|
mapRangeAlgEquiv 📖 | CompOp | 3 mathmath: mapRangeAlgEquiv_trans, symm_mapRangeAlgEquiv, mapRangeAlgEquiv_apply
|
mapRangeAlgHom 📖 | CompOp | 6 mathmath: mapRangeAlgHom_single, mapRangeAlgEquiv_apply, toRingHom_mapRangeAlgHom, tensorEquiv_tmul, scalarTensorEquiv_tmul, mapRangeAlgHom_apply
|
singleZeroAlgHom 📖 | CompOp | 2 mathmath: singleZeroAlgHom_apply, isLocalHom_singleZeroAlgHom
|
toMultiplicativeAlgEquiv 📖 | CompOp | — |
uniqueAlgEquiv 📖 | CompOp | — |
| Name | Category | Theorems |
algebra 📖 | CompOp | 78 mathmath: finiteType_of_fg, isLocalHom_algebraMap, Representation.asAlgebraHom_single, algHom_ext'_iff, tensorEquiv.invFun_tmul, domCongr_toAlgHom, Rep.to_Module_monoidAlgebra_map_aux, mem_adjoin_support, Representation.asAlgebraHom_def, lift_symm_apply, coe_liftNCAlgHom, Representation.smul_ofModule_asModule, instIsPushout, mapDomainBialgHom_comp, coe_algebraMap, mapDomain_algebraMap, mapDomainBialgHom_mapDomainBialgHom, mapRangeAlgHom_single, mapRangeAlgEquiv_trans, mvPolynomial_aeval_of_surjective_of_closure, domCongr_single, toRingHom_mapRangeAlgHom, scalarTensorEquiv_tmul, single_algebraMap_eq_algebraMap_mul_of, mapDomainAlgHom_id, mapDomainAlgHom_comp, Subrepresentation.mem_asSubmodule'_iff, Representation.asModuleEquiv_symm_map_smul, mapRangeAlgHom_apply, symm_mapRangeAlgEquiv, lift_unique, tensorEquiv_symm_single, lift_apply', Subrepresentation.submoduleSubrepresentationOrderIso_apply, mapDomainBialgHom_apply, mapRangeAlgEquiv_apply, freeAlgebra_lift_of_surjective_of_closure, Representation.asAlgebraHom_single_one, mapRangeRingHom_comp_algebraMap, Representation.isSimpleModule_iff_irreducible_ofModule, Representation.instIsScalarTowerMonoidAlgebraAsModule, commAlgEquiv_single_single, isScalarTower_monoidAlgebra, isLocalHom_singleOneAlgHom, finiteType_iff_fg, exists_finset_adjoin_eq_top, Representation.ofModule_asModule_act, tensorEquiv_tmul, Representation.asAlgebraHom_of, finiteType_iff_group_fg, domCongr_comp_lsingle, instIsPushout', domCongr_symm, scalarTensorEquiv_symm_single, lift_apply, lift_mapRangeRingHom_algebraMap, Representation.ofModule_asAlgebraHom_apply_apply, symm_commAlgEquiv, curryAlgEquiv_symm_single, single_eq_algebraMap_mul_of, domCongr_support, Representation.asModuleEquiv_map_smul, singleOneAlgHom_apply, lift_def, Representation.is_simple_module_iff_irreducible_ofModule, Subrepresentation.mem_ofSubmodule_iff, mapDomainAlgHom_apply, mapDomainRingHom_comp_algebraMap, Representation.asAlgebraHom_mem_of_forall_mem, domCongr_refl, domCongr_apply, mapDomainBialgHom_id, lift_single, curryAlgEquiv_single, Representation.isSemisimpleModule_iff_isSemisimpleRepresentation_ofModule, Subrepresentation.submoduleSubrepresentationOrderIso_symm_apply, lift_of, lift_unique'
|
algebraMonoidAlgebra 📖 | CompOp | 4 mathmath: instIsPushout, isScalarTower_monoidAlgebra, instIsPushout', algebraMap_def
|
commAlgEquiv 📖 | CompOp | 2 mathmath: commAlgEquiv_single_single, symm_commAlgEquiv
|
curryAlgEquiv 📖 | CompOp | 2 mathmath: curryAlgEquiv_symm_single, curryAlgEquiv_single
|
domCongr 📖 | CompOp | 7 mathmath: domCongr_toAlgHom, domCongr_single, domCongr_comp_lsingle, domCongr_symm, domCongr_support, domCongr_refl, domCongr_apply
|
equivariantOfLinearOfComm 📖 | CompOp | 1 mathmath: equivariantOfLinearOfComm_apply
|
liftMagma 📖 | CompOp | 2 mathmath: liftMagma_apply_apply, liftMagma_symm_apply
|
liftNCAlgHom 📖 | CompOp | 1 mathmath: coe_liftNCAlgHom
|
mapDomainAlgHom 📖 | CompOp | 4 mathmath: domCongr_toAlgHom, mapDomainAlgHom_id, mapDomainAlgHom_comp, mapDomainAlgHom_apply
|
mapDomainNonUnitalAlgHom 📖 | CompOp | 1 mathmath: mapDomainNonUnitalAlgHom_apply
|
mapRangeAlgEquiv 📖 | CompOp | 3 mathmath: mapRangeAlgEquiv_trans, symm_mapRangeAlgEquiv, mapRangeAlgEquiv_apply
|
mapRangeAlgHom 📖 | CompOp | 6 mathmath: mapRangeAlgHom_single, toRingHom_mapRangeAlgHom, scalarTensorEquiv_tmul, mapRangeAlgHom_apply, mapRangeAlgEquiv_apply, tensorEquiv_tmul
|
singleOneAlgHom 📖 | CompOp | 2 mathmath: isLocalHom_singleOneAlgHom, singleOneAlgHom_apply
|
toAdditiveAlgEquiv 📖 | CompOp | — |
uniqueAlgEquiv 📖 | CompOp | — |