Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/MonoidAlgebra/Defs.lean

Statistics

MetricCount
DefinitionsAddMonoidAlgebra, addAddCommGroup, addAddCommMonoid, commRing, commSemiring, curryRingEquiv, distribSMul, inhabited, instCoeFun, instMul, nonAssocRing, nonAssocSemiring, nonUnitalCommRing, nonUnitalCommSemiring, nonUnitalNonAssocRing, nonUnitalNonAssocSemiring, nonUnitalRing, nonUnitalSemiring, of, of', ofMagma, semiring, single, singleAddHom, singleHom, singleZeroRingHom, smulZeroClass, unexpander, unique, uniqueRingEquiv, zero, Β«term__[_]Β», addCommGroup, addCommMonoid, commRing, commSemiring, curryRingEquiv, distribSMul, inhabited, instCoeFun, instMul, mul', nonAssocRing, nonAssocSemiring, nonUnitalCommRing, nonUnitalCommSemiring, nonUnitalNonAssocRing, nonUnitalNonAssocSemiring, nonUnitalRing, nonUnitalSemiring, of, ofMagma, one, semiring, single, singleAddHom, singleHom, singleOneRingHom, smulZeroClass, unexpander, unique, uniqueRingEquiv, Β«term__[_]Β»
63
TheoremsaddHom_ext', addHom_ext'_iff, coe_add, coeff_smul, curryRingEquiv_single, curryRingEquiv_symm_single, ext, ext_iff, induction_linear, induction_on, instIsCancelAdd, intCast_def, isCentralScalar, isLocalHom_singleZeroRingHom, isScalarTower, mul_apply, mul_apply_antidiagonal, mul_apply_left, mul_apply_right, mul_def, mul_single_apply, mul_single_apply_aux, mul_single_apply_of_not_exists_add, mul_single_zero_apply, natCast_def, neg_apply, nontrivial, of'_apply, of'_commute, of'_eq_of, ofMagma_apply, of_apply, of_injective, one_def, prod_single, ringHom_ext, ringHom_ext', ringHom_ext'_iff, singleAddHom_apply, singleHom_apply, singleZeroRingHom_apply, single_add, single_apply, single_commute, single_commute_single, single_eq_zero, single_mul_apply, single_mul_apply_aux, single_mul_apply_of_not_exists_add, single_mul_single, single_ne_zero, single_neg, single_pow, single_zero, single_zero_comm, single_zero_mul_apply, smulCommClass, smul_single, smul_single', sum_single, sum_single_index, uniqueRingEquiv_apply, uniqueRingEquiv_symm_apply, addHom_ext', addHom_ext'_iff, coe_add, curryRingEquiv_single, curryRingEquiv_symm_single, ext, ext_iff, induction_linear, induction_on, instIsCancelAdd, intCast_def, isCentralScalar, isLocalHom_singleOneRingHom, isScalarTower, mul_apply, mul_apply_antidiagonal, mul_apply_left, mul_apply_right, mul_def, mul_single_apply, mul_single_apply_aux, mul_single_apply_of_not_exists_mul, mul_single_one_apply, natCast_def, neg_apply, nontrivial, ofMagma_apply, of_apply, of_commute, of_injective, one_def, prod_single, ringHom_ext, ringHom_ext', ringHom_ext'_iff, singleAddHom_apply, singleHom_apply, singleOneRingHom_apply, single_add, single_apply, single_commute, single_commute_single, single_eq_zero, single_mul_apply, single_mul_apply_aux, single_mul_apply_of_not_exists_mul, single_mul_single, single_ne_zero, single_neg, single_one_comm, single_one_mul_apply, single_pow, single_zero, smulCommClass, smul_apply, smul_single, smul_single', sum_single, sum_single_index, uniqueRingEquiv_apply, uniqueRingEquiv_symm_apply
124
Total187

AddMonoidAlgebra

Definitions

NameCategoryTheorems
addAddCommGroup πŸ“–CompOp
10 mathmath: DirectSum.toAddMonoidAlgebra_sub, neg_apply, supDegree_neg, Polynomial.ofFinsupp_neg, Polynomial.toFinsupp_neg, toDirectSum_sub, supDegree_sub_le, toDirectSum_neg, single_neg, DirectSum.toAddMonoidAlgebra_neg
addAddCommMonoid πŸ“–CompOp
98 mathmath: supDegree_sum_lt, liftNC_mul, of'_mem_span, LaurentPolynomial.comul_T, le_infDegree_add, LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, comul_single, isScalarTower_self, supDegree_add_le, divOfHom_apply_apply, Polynomial.evalβ‚‚_ofFinsupp, singleZeroRingHom_apply, instIsTorsionFree, counit_single, smulCommClass, moduleFinite, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, decomposeAux_coe, lsingle_apply, gradeBy.isInternal, single_add, smul_single, tensorEquiv.invFun_tmul, smulCommClass_symm_self, le_inf_support_add, isScalarTower, mul_def, toDirectSum_zero, toDirectSum_add, coe_add, leadingCoeff_zero, Polynomial.toFinsuppIsoLinear_symm_apply_toFinsupp, LaurentPolynomial.leval_apply, faithfulSMul, GradesBy.decompose_single, singleAddHom_apply, coe_liftNCAlgHom, Polynomial.ofFinsupp_smul, mem_grade_iff', coeff_smul, DirectSum.toAddMonoidAlgebra_zero, LieAlgebra.LoopAlgebra.toFinsupp_single_tmul, single_mem_grade, Polynomial.toFinsuppIsoLinear_apply, LaurentPolynomial.comul_C, liftNC_smul, liftNC_single, smul_single', supDegree_leadingCoeff_sum_eq, tensorEquiv_tmul, gradeBy.gradedMonoid, tensorEquiv_symm_single, mem_grade_iff, grade.decompose_single, single_eq_zero, LieAlgebra.LoopAlgebra.residuePairing_apply_apply, lhom_ext'_iff, single_zero, Polynomial.toFinsupp_sum, LaurentPolynomial.counit_C_mul_T, basis_apply, DirectSum.toAddMonoidAlgebra_add, grade.isInternal, Polynomial.toFinsupp_smul, mapDomain_zero, liftNC_one, scalarTensorEquiv_symm_single, sup_support_add_le, instIsCocomm, instFree, LaurentPolynomial.instIsCocomm, LaurentPolynomial.counit_T, LaurentPolynomial.counit_C, LaurentPolynomial.comul_C_mul_T, mem_span_support', LaurentPolynomial.smul_eq_C_mul, decomposeAux_single, addHom_ext'_iff, addMonoidAlgebraAddEquivDirectSum_symm_apply, decomposeAux_eq_decompose, mapDomain_add, lift_def, instIsCancelAdd, addMonoidAlgebraAddEquivDirectSum_apply, scalarTensorEquiv_tmul, distribMulActionHom_ext'_iff, Polynomial.ofFinsupp_sum, sum_single, single_mem_gradeBy, grade.gradedMonoid, isCentralScalar, LaurentPolynomial.comul_C_mul_T_self, LaurentPolynomial.instIsScalarTowerPolynomial, smulCommClass_self, mem_gradeBy_iff, mapDomain_sum, mem_span_support, supDegree_sum_le
commRing πŸ“–CompOp
2 mathmath: LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, LieAlgebra.LoopAlgebra.twoCocycleOfBilinear_coe
commSemiring πŸ“–CompOp
16 mathmath: LaurentPolynomial.mk'_one_X_pow, LaurentPolynomial.mk'_mul_T, LaurentPolynomial.mk'_one_X, algebraMap_def, mvPolynomial_aeval_of_surjective_of_closure, sup_support_multiset_prod_le, prod_single, LaurentPolynomial.mk'_eq, instIsPushout, instIsPushout', sup_support_finset_prod_le, LaurentPolynomial.isLocalization, le_inf_support_finset_prod, le_inf_support_multiset_prod, supDegree_prod_le, vaddAssocClass_addMonoidAlgebra
curryRingEquiv πŸ“–CompOp
2 mathmath: curryRingEquiv_symm_single, curryRingEquiv_single
distribSMul πŸ“–CompOpβ€”
inhabited πŸ“–CompOpβ€”
instCoeFun πŸ“–CompOpβ€”
instMul πŸ“–CompOp
111 mathmath: sup_support_list_prod_le, instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums, instIsCancelAddZeroOfIsCancelAddOfUniqueSums, mul_single_apply, LaurentPolynomial.degree_C_mul_T_ite, mapDomainRingEquiv_apply, mul_apply, LaurentPolynomial.mk'_mul_T, liftNC_mul, LaurentPolynomial.mul_T_assoc, LaurentPolynomial.commute_T, LaurentPolynomial.T_sub, Monic.supDegree_mul, Monic.supDegree_mul_of_ne_zero_right, instNoZeroDivisorsOfUniqueSums, instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums, uniqueRingEquiv_apply, opRingEquiv_symm_single, opRingEquiv_symm_apply, LaurentPolynomial.evalβ‚‚_C_mul_T, Polynomial.toLaurent_C_mul_T, LaurentPolynomial.invOf_T, supDegree_mul, LaurentPolynomial.smeval_C_mul, of'_commute, single_commute_single, of'_mul_divOf, mapRangeRingEquiv_trans, Monic.leadingCoeff_mul_eq_left, LaurentPolynomial.degree_C_mul_T, support_mul_single_subset, Monic.mul, support_single_mul_subset, toDirectSum_mul, mul_def, LaurentPolynomial.mk'_eq, Monic.leadingCoeff_mul_eq_right, apply_add_of_supDegree_le, DirectSum.toAddMonoidAlgebra_mul, commRingEquiv_single_single, mul_of'_modOf, mul_single_zero_apply, le_inf_support_list_prod, mapDomainRingEquiv_trans, support_mul_single_eq_image, mul_apply_left, single_zero_comm, modOf_add_divOf, LaurentPolynomial.evalβ‚‚_C_mul_T_neg_n, support_mul, Polynomial.toFinsupp_mul, single_mul_apply, single_mul_apply_of_not_exists_add, LaurentPolynomial.single_eq_C_mul_T, opRingEquiv_single, ofMagma_apply, mul_single_apply_aux, sup_support_mul_le, mul_apply_add_eq_mul_of_uniqueAdd, single_mul_single, le_infDegree_mul, le_inf_support_mul, curryRingEquiv_symm_single, opRingEquiv_apply, mapDomainRingEquiv_single, Monic.supDegree_mul_of_ne_zero_left, Polynomial.toFinsuppIso_apply, uniqueRingEquiv_symm_apply, leadingCoeff_mul, mapDomain_mul, symm_mapDomainRingEquiv, LaurentPolynomial.counit_C_mul_T, mapRangeRingEquiv_apply, supDegree_mul_le, divOf_add_modOf, Polynomial.ofFinsupp_mul, support_single_mul, support_single_mul_eq_image, LaurentPolynomial.support_C_mul_T_of_ne_zero, single_zero_mul_apply, LaurentPolynomial.comul_C_mul_T, LaurentPolynomial.smeval_C_mul_T_n, single_mul_apply_aux, Polynomial.toFinsuppIso_symm_apply, LaurentPolynomial.smul_eq_C_mul, Polynomial.toLaurent_C_mul_eq, curryRingEquiv_single, addMonoidAlgebraRingEquivDirectSum_apply, LaurentPolynomial.trunc_C_mul_T, LaurentPolynomial.support_C_mul_T, addMonoidAlgebraRingEquivDirectSum_symm_apply, symm_mapRangeRingEquiv, of'_mul_modOf, symm_commRingEquiv, Polynomial.toLaurent_C_mul_X_pow, LaurentPolynomial.evalβ‚‚_C_mul_T_n, LaurentPolynomial.toLaurent_reverse, single_commute, LaurentPolynomial.comul_C_mul_T_self, mul_apply_right, LaurentPolynomial.T_add, LaurentPolynomial.exists_T_pow, mul_single_apply_of_not_exists_add, mapRangeRingEquiv_single, support_mul_single, LaurentPolynomial.antipode_C_mul_T, mul_apply_antidiagonal, LaurentPolynomial.degree_C_mul_T_le, LaurentPolynomial.T_mul, apply_supDegree_add_supDegree, mul_of'_divOf
nonAssocRing πŸ“–CompOp
2 mathmath: intCast_def, supDegree_sub_lt_of_leadingCoeff_eq
nonAssocSemiring πŸ“–CompOp
92 mathmath: singleHom_apply, LaurentPolynomial.degree_C_mul_T_ite, Polynomial.toLaurent_eq_zero, algHom_ext'_iff, LaurentPolynomial.mk'_mul_T, liftNCRingHom_single, toRingHom_mapRangeRingEquiv, toRingHom_mapDomainRingEquiv, lift_mapRangeRingHom_algebraMap, divOfHom_apply_apply, Polynomial.trunc_toLaurent, mapRangeRingHom_comp_algebraMap, Polynomial.ofFinsupp_natCast, LaurentPolynomial.evalβ‚‚_C_mul_T, Polynomial.toLaurent_C_mul_T, singleZeroRingHom_apply, LaurentPolynomial.algebraMap_apply, mapRangeRingHom_single, mapDomainRingHom_comp_algebraMap, LaurentPolynomial.smeval_C_mul, Polynomial.toLaurent_injective, of_apply, LaurentPolynomial.degree_C_mul_T, mapRangeRingHom_apply, LaurentPolynomial.smeval_C, isLocalHom_singleZeroRingHom, ringHom_ext'_iff, LaurentPolynomial.degree_C, LaurentPolynomial.evalβ‚‚_T, LaurentPolynomial.C_apply, Polynomial.toFinsupp_nsmul, Polynomial.toLaurent_comp_C, LaurentPolynomial.mk'_eq, mapRangeRingHom_comp, toDirectSum_natCast, Polynomial.toLaurent_apply, DirectSum.toAddMonoidAlgebra_natCast, LaurentPolynomial.algebraMap_eq_toLaurent, Polynomial.toLaurent_X_pow, Polynomial.toFinsupp_natCast, mapDomainRingHom_comp, LaurentPolynomial.single_eq_C, natCast_def, LaurentPolynomial.evalβ‚‚_C_mul_T_neg_n, lift_of, coe_mapRangeRingHom, LaurentPolynomial.C_eq_algebraMap, LaurentPolynomial.single_eq_C_mul_T, LaurentPolynomial.comul_C, LaurentPolynomial.evalβ‚‚_C, LaurentPolynomial.evalβ‚‚_toLaurent, lift_unique', toRingHom_mapRangeAlgHom, LaurentPolynomial.toLaurent_support, Polynomial.toLaurent_inj, LaurentPolynomial.counit_C_mul_T, Polynomial.toLaurent_one, LaurentPolynomial.degree_C_ite, LaurentPolynomial.evalβ‚‚_T_neg_n, LaurentPolynomial.antipode_C, of_injective, mapRangeRingHom_id, LaurentPolynomial.support_C_mul_T_of_ne_zero, LaurentPolynomial.counit_C, LaurentPolynomial.comul_C_mul_T, LaurentPolynomial.smeval_C_mul_T_n, LaurentPolynomial.leftInverse_trunc_toLaurent, LaurentPolynomial.smul_eq_C_mul, Polynomial.toLaurent_C_mul_eq, LaurentPolynomial.evalβ‚‚_T_n, LaurentPolynomial.trunc_C_mul_T, LaurentPolynomial.support_C_mul_T, Polynomial.toLaurent_X, mapDomainRingHom_id, Polynomial.coe_toLaurentAlg, Polynomial.toLaurent_C, Polynomial.toLaurentAlg_apply, Polynomial.toLaurent_C_mul_X_pow, LaurentPolynomial.evalβ‚‚_C_mul_T_n, LaurentPolynomial.toLaurent_reverse, of'_eq_of, LaurentPolynomial.comul_C_mul_T_self, LaurentPolynomial.instIsScalarTowerPolynomial, LaurentPolynomial.invert_C, Polynomial.ofFinsupp_nsmul, LaurentPolynomial.exists_T_pow, mapRangeRingHom_comp_mapDomainRingHom, LaurentPolynomial.invert_comp_C, LaurentPolynomial.antipode_C_mul_T, LaurentPolynomial.degree_C_le, mapDomainRingHom_apply, LaurentPolynomial.degree_C_mul_T_le
nonUnitalCommRing πŸ“–CompOpβ€”
nonUnitalCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocRing πŸ“–CompOpβ€”
nonUnitalNonAssocSemiring πŸ“–CompOp
69 mathmath: instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums, instIsCancelAddZeroOfIsCancelAddOfUniqueSums, mapDomainRingEquiv_apply, Polynomial.toLaurent_eq_zero, Polynomial.ofFinsupp_zero, mapDomainNonUnitalRingHom_id, isScalarTower_self, mapRangeAddEquiv_apply, mapDomainAddEquiv_single, zero_divOf, mapDomainNonUnitalAlgHom_apply, mapDomainAddEquiv_apply, instNoZeroDivisorsOfUniqueSums, instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums, uniqueRingEquiv_apply, opRingEquiv_symm_single, opRingEquiv_symm_apply, mapRangeRingEquiv_trans, mapRangeAddEquiv_trans, supDegree_add_eq_right, smulCommClass_symm_self, Polynomial.toFinsupp_eq_zero, Polynomial.ofFinsupp_add, leadingCoeff_add_eq_right, supDegree_zero, mapDomainNonUnitalRingHom_apply, leadingCoeff_eq_zero, leadingCoeff_add_eq_left, of'_dvd_iff_modOf_eq_zero, commRingEquiv_single_single, mul_of'_modOf, add_divOf, mapDomainRingEquiv_trans, modOf_add_divOf, nonUnitalAlgHom_ext'_iff, liftMagma_apply_apply, mapDomainNonUnitalRingHom_comp, opRingEquiv_single, liftMagma_symm_apply, curryRingEquiv_symm_single, opRingEquiv_apply, mapDomainRingEquiv_single, Polynomial.toFinsuppIso_apply, uniqueRingEquiv_symm_apply, symm_mapDomainRingEquiv, supDegree_add_eq_left, Polynomial.toFinsupp_add, mapRangeRingEquiv_apply, divOf_add_modOf, mapRangeAddEquiv_single, Polynomial.toFinsuppIso_symm_apply, LaurentPolynomial.degree_eq_bot_iff, mapDomainAddEquiv_trans, curryRingEquiv_single, Polynomial.ofFinsupp_eq_zero, addMonoidAlgebraRingEquivDirectSum_apply, addMonoidAlgebraRingEquivDirectSum_symm_apply, symm_mapRangeRingEquiv, of'_mul_modOf, LaurentPolynomial.smeval_zero, of'_modOf, symm_commRingEquiv, symm_mapDomainAddEquiv, LaurentPolynomial.smeval_add, Polynomial.toFinsupp_zero, smulCommClass_self, LaurentPolynomial.degree_zero, mapRangeRingEquiv_single, symm_mapRangeAddEquiv
nonUnitalRing πŸ“–CompOpβ€”
nonUnitalSemiring πŸ“–CompOp
1 mathmath: of'_dvd_iff_modOf_eq_zero
of πŸ“–CompOp
7 mathmath: algHom_ext'_iff, of_apply, ringHom_ext'_iff, lift_of, lift_unique', of_injective, of'_eq_of
of' πŸ“–CompOp
23 mathmath: of'_mem_span, of'_divOf, of'_commute, of'_mul_divOf, mvPolynomial_aeval_of_surjective_of_closure, mem_ideal_span_of'_image, of'_dvd_iff_modOf_eq_zero, mul_of'_modOf, modOf_add_divOf, exists_finset_adjoin_eq_top, of'_apply, lift_of', mem_adjoin_support, divOf_add_modOf, support_gen_of_gen, mem_span_support', of'_mul_modOf, of'_modOf, support_gen_of_gen', of'_eq_of, mem_span_support, freeAlgebra_lift_of_surjective_of_closure, mul_of'_divOf
ofMagma πŸ“–CompOp
3 mathmath: nonUnitalAlgHom_ext'_iff, ofMagma_apply, liftMagma_symm_apply
semiring πŸ“–CompOp
104 mathmath: mapRangeAlgEquiv_trans, lift_apply', domCongr_comp_lsingle, symm_mapRangeAlgEquiv, algHom_ext'_iff, mapRangeAlgHom_single, Polynomial.toFinsupp_pow, domCongr_toAlgHom, lift_mapRangeRingHom_algebraMap, LaurentPolynomial.T_pow, mapDomainBialgHom_id, mapDomainAlgHom_id, mapRangeRingHom_comp_algebraMap, algebraMap_def, LaurentPolynomial.algebraMap_apply, LaurentPolynomial.antipode_T, mapDomainRingHom_comp_algebraMap, Monic.pow, mapDomainBialgHom_mapDomainBialgHom, BoundedContinuousFunction.charAlgHom_apply, domCongr_refl, decomposeAux_coe, Polynomial.ofFinsupp_pow, tensorEquiv.invFun_tmul, Polynomial.ofFinsupp_algebraMap, isLocalHom_singleZeroRingHom, commAlgEquiv_single_single, isLocalHom_algebraMap, lift_apply, mem_ideal_span_of'_image, domCongr_single, mapDomainBialgHom_apply, coe_algebraMap, le_inf_support_pow, mapRangeAlgEquiv_apply, finiteType_of_fg, addMonoidAlgebraAlgEquivDirectSum_symm_apply, commRingEquiv_single_single, LaurentPolynomial.algebraMap_X_pow, finiteType_iff_group_fg, LaurentPolynomial.algebraMap_eq_toLaurent, toDirectSum_pow, lift_single, mapDomainAlgHom_apply, lift_symm_apply, LaurentPolynomial.isUnit_T, coe_liftNCAlgHom, lift_of, LaurentPolynomial.C_eq_algebraMap, mapDomain_algebraMap, exists_finset_adjoin_eq_top, lift_unique', toRingHom_mapRangeAlgHom, tensorEquiv_tmul, gradeBy.gradedMonoid, Polynomial.toFinsupp_algebraMap, LaurentPolynomial.invert_symm, symm_commAlgEquiv, mapDomainAlgHom_comp, tensorEquiv_symm_single, lift_of', curryRingEquiv_symm_single, mem_adjoin_support, Polynomial.toFinsuppIsoAlg_symm_apply_toFinsupp, domCongr_support, Monic.supDegree_pow, curryAlgEquiv_symm_single, domCongr_symm, algHom_ext_iff, sup_support_pow_le, LaurentPolynomial.invert_apply, mapDomainBialgHom_comp, LaurentPolynomial.antipode_C, scalarTensorEquiv_symm_single, Polynomial.toFinsuppIsoAlg_apply, finiteType_iff_fg, single_pow, domCongr_apply, decomposeAux_single, curryRingEquiv_single, DirectSum.toAddMonoidAlgebra_pow, antipode_single, decomposeAux_eq_decompose, lift_unique, lift_def, singleZeroAlgHom_apply, Polynomial.coe_toLaurentAlg, scalarTensorEquiv_tmul, Polynomial.toLaurentAlg_apply, symm_commRingEquiv, LaurentPolynomial.toLaurent_reverse, addMonoidAlgebraAlgEquivDirectSum_apply, grade.gradedMonoid, isLocalHom_singleZeroAlgHom, LaurentPolynomial.invert_C, curryAlgEquiv_single, mapRangeAlgHom_apply, LaurentPolynomial.invert_comp_C, LaurentPolynomial.antipode_C_mul_T, freeAlgebra_lift_of_surjective_of_closure, instIsDomainOfIsCancelAddOfUniqueSums, LaurentPolynomial.invert_T, vaddAssocClass_addMonoidAlgebra, LaurentPolynomial.involutive_invert
single πŸ“–CompOp
87 mathmath: singleHom_apply, mul_single_apply, liftNCRingHom_single, supDegree_single, comul_single, mapRangeAlgHom_single, mapDomainAddEquiv_single, Polynomial.toFinsupp_monomial, single_apply, opRingEquiv_symm_single, intCast_def, counit_single, mapRangeRingHom_single, toDirectSum_single, single_commute_single, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, Polynomial.ofFinsupp_single, lsingle_apply, of_apply, single_add, smul_single, support_mul_single_subset, commAlgEquiv_single_single, support_single_mul_subset, domCongr_single, Polynomial.toFinsupp_X_pow, prod_single, mul_def, coe_algebraMap, commRingEquiv_single_single, mul_single_zero_apply, lift_single, lift_symm_apply, support_mul_single_eq_image, LaurentPolynomial.single_eq_C, single_zero_comm, singleAddHom_apply, natCast_def, leadingCoeff_single, LieAlgebra.LoopAlgebra.toFinsupp_single_tmul, single_mul_apply, single_mul_apply_of_not_exists_add, LaurentPolynomial.single_eq_C_mul_T, of'_apply, liftNC_single, opRingEquiv_single, smul_single', ofMagma_apply, mul_single_apply_aux, Polynomial.toFinsupp_X, single_mul_single, tensorEquiv_symm_single, DirectSum.toAddMonoidAlgebra_of, curryRingEquiv_symm_single, mapDomainRingEquiv_single, single_eq_zero, LaurentPolynomial.smeval_single, single_zero, curryAlgEquiv_symm_single, algHom_ext_iff, basis_apply, LaurentPolynomial.single_zero_one_eq_one, scalarTensorEquiv_symm_single, support_single_mul, support_single_mul_eq_image, single_pow, single_zero_mul_apply, supDegree_single_ne_zero, mapRangeAddEquiv_single, Polynomial.toFinsupp_C_mul_X_pow, single_neg, single_mul_apply_aux, curryRingEquiv_single, Polynomial.toFinsupp_C_mul_X, antipode_single, lift_unique, singleZeroAlgHom_apply, mapDomain_single, sum_single, single_commute, sum_single_index, curryAlgEquiv_single, mul_single_apply_of_not_exists_add, one_def, mapRangeRingEquiv_single, support_mul_single, Polynomial.toFinsupp_C
singleAddHom πŸ“–CompOp
3 mathmath: singleZeroRingHom_apply, singleAddHom_apply, addHom_ext'_iff
singleHom πŸ“–CompOp
1 mathmath: singleHom_apply
singleZeroRingHom πŸ“–CompOp
3 mathmath: singleZeroRingHom_apply, isLocalHom_singleZeroRingHom, ringHom_ext'_iff
smulZeroClass πŸ“–CompOp
14 mathmath: isScalarTower_self, smulCommClass, smul_single, smulCommClass_symm_self, isScalarTower, faithfulSMul, Polynomial.ofFinsupp_smul, coeff_smul, liftNC_smul, smul_single', Polynomial.toFinsupp_smul, LaurentPolynomial.smul_eq_C_mul, isCentralScalar, smulCommClass_self
unexpander πŸ“–CompOpβ€”
unique πŸ“–CompOpβ€”
uniqueRingEquiv πŸ“–CompOp
2 mathmath: uniqueRingEquiv_apply, uniqueRingEquiv_symm_apply
zero πŸ“–CompOp
20 mathmath: sup_support_list_prod_le, of'_divOf, mapDomain_one, LaurentPolynomial.invOf_T, DirectSum.toAddMonoidAlgebra_one, LaurentPolynomial.T_zero, Polynomial.ofFinsupp_eq_one, Polynomial.ofFinsupp_one, le_inf_support_list_prod, Polynomial.toFinsupp_one, monic_one, support_one_subset, Polynomial.toFinsupp_eq_one, Polynomial.toLaurent_one, LaurentPolynomial.smeval_one, LaurentPolynomial.single_zero_one_eq_one, liftNC_one, toDirectSum_one, one_def, support_one
Β«term__[_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addHom_ext' πŸ“–β€”AddMonoidHom.comp
AddMonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addAddCommMonoid
singleAddHom
β€”β€”Finsupp.addHom_ext'
addHom_ext'_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
AddMonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addAddCommMonoid
singleAddHom
β€”addHom_ext'
coe_add πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coeff_smul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
β€”β€”
curryRingEquiv_single πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoidAlgebra
semiring
instMul
Prod.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
curryRingEquiv
single
β€”Finsupp.curry_single
curryRingEquiv_symm_single πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoidAlgebra
semiring
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Prod.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
curryRingEquiv
single
β€”Finsupp.uncurry_single
ext πŸ“–β€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”β€”Finsupp.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”ext
induction_linear πŸ“–β€”AddMonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
single
β€”β€”Finsupp.induction_linear
induction_on πŸ“–β€”DFunLike.coe
MonoidHom
Multiplicative
AddMonoidAlgebra
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”Finsupp.induction_linear
smul_single
mul_one
Finsupp.single_zero
instIsCancelAdd πŸ“–mathematicalβ€”IsCancelAdd
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
β€”Finsupp.instIsCancelAdd
intCast_def πŸ“–mathematicalβ€”AddMonoidAlgebra
Ring.toSemiring
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
nonAssocRing
single
AddZero.toZero
AddZeroClass.toAddZero
Ring.toAddGroupWithOne
β€”β€”
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
MulOpposite
β€”Finsupp.isCentralScalar
isLocalHom_singleZeroRingHom πŸ“–mathematicalβ€”IsLocalHom
AddMonoidAlgebra
RingHom
Semiring.toNonAssocSemiring
nonAssocSemiring
AddMonoid.toAddZeroClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
RingHom.instFunLike
singleZeroRingHom
β€”isUnit_iff_exists
single_zero_mul_apply
Finsupp.single_eq_same
mul_single_zero_apply
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
β€”Finsupp.isScalarTower
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_def
Finsupp.sum_apply
single_apply
mul_apply_antidiagonal πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finset.sum_filter
Finset.sum_product
Finset.sum_congr
Finset.ext
Finset.mem_filter
Finset.mem_product
Finset.sum_subset
Finset.filter_subset
MulZeroClass.zero_mul
Finset.filter.congr_simp
Finsupp.mem_support_iff
MulZeroClass.mul_zero
mul_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”mul_apply
Finset.sum_congr
eq_neg_add_iff_add_eq
Finset.sum_ite_eq'
Finsupp.mem_support_iff
MulZeroClass.mul_zero
mul_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”mul_apply
Finsupp.sum_comm
Finset.sum_congr
eq_add_neg_iff_add_eq
Finset.sum_ite_eq'
Finsupp.mem_support_iff
MulZeroClass.zero_mul
mul_def πŸ“–mathematicalβ€”AddMonoidAlgebra
instMul
Finsupp.sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
addAddCommMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
mul_single_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”mul_single_apply_aux
Finsupp.mem_support_iff
eq_add_neg_iff_add_eq
mul_single_apply_aux πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finsupp.sum_single_index
MulZeroClass.mul_zero
Finset.sum_congr
Finsupp.sum_eq_single
MulZeroClass.zero_mul
mul_single_apply_of_not_exists_add πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
single
β€”mul_apply
Finsupp.sum_single_index
Finsupp.sum_fun_zero
mul_single_zero_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
single
AddZero.toZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_single_apply_aux
Finsupp.mem_support_iff
add_zero
natCast_def πŸ“–mathematicalβ€”AddMonoidAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
nonAssocSemiring
single
AddZero.toZero
AddZeroClass.toAddZero
Semiring.toNonAssocSemiring
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Finsupp.instFunLike
AddMonoidAlgebra
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
addAddCommGroup
Ring.toAddCommGroup
β€”β€”
nontrivial πŸ“–mathematicalβ€”Nontrivial
AddMonoidAlgebra
β€”Finsupp.instNontrivial
of'_apply πŸ“–mathematicalβ€”of'
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
of'_commute πŸ“–mathematicalAddCommute
AddZero.toAdd
AddZeroClass.toAddZero
Commute
AddMonoidAlgebra
instMul
of'
β€”single_commute
Commute.one_left
of'_eq_of πŸ“–mathematicalβ€”of'
DFunLike.coe
MonoidHom
Multiplicative
AddMonoidAlgebra
MulOneClass.toMulOne
Multiplicative.mulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
ofMagma_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Multiplicative
AddMonoidAlgebra
Multiplicative.mul
instMul
MulHom.funLike
ofMagma
single
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
of_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
AddMonoidAlgebra
MulOneClass.toMulOne
Multiplicative.mulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
single
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
of_injective πŸ“–mathematicalβ€”Multiplicative
AddMonoidAlgebra
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Multiplicative.mulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
β€”MonoidAlgebra.of_injective
one_def πŸ“–mathematicalβ€”AddMonoidAlgebra
zero
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
prod_single πŸ“–mathematicalβ€”Finset.prod
AddMonoidAlgebra
CommSemiring.toSemiring
CommSemiring.toCommMonoid
commSemiring
single
Finset.sum
β€”Finset.cons_induction_on
Finset.prod_cons
single_mul_single
Finset.sum_cons
ringHom_ext πŸ“–β€”DFunLike.coe
RingHom
AddMonoidAlgebra
nonAssocSemiring
Semiring.toNonAssocSemiring
RingHom.instFunLike
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”RingHom.coe_addMonoidHom_injective
Finsupp.addHom_ext
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
single_mul_single
zero_add
mul_one
ringHom_ext' πŸ“–β€”RingHom.comp
AddMonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
AddMonoid.toAddZeroClass
singleZeroRingHom
MonoidHom.comp
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHomClass.toMonoidHom
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
of
β€”β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ringHom_ext
RingHom.congr_fun
DFunLike.congr_fun
ringHom_ext'_iff πŸ“–mathematicalβ€”RingHom.comp
AddMonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
AddMonoid.toAddZeroClass
singleZeroRingHom
MonoidHom.comp
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHomClass.toMonoidHom
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
of
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ringHom_ext'
singleAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddMonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addAddCommMonoid
AddMonoidHom.instFunLike
singleAddHom
single
β€”β€”
singleHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
AddMonoidAlgebra
MulOneClass.toMulOne
Prod.instMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Multiplicative.mulOneClass
nonAssocSemiring
MonoidHom.instFunLike
singleHom
single
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
singleZeroRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
AddMonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
RingHom.instFunLike
singleZeroRingHom
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddCommMonoid.toAddMonoid
addAddCommMonoid
AddMonoidHom.toZeroHom
singleAddHom
β€”β€”
single_add πŸ“–mathematicalβ€”single
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
β€”Finsupp.single_add
single_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
single
β€”Finsupp.single_apply
single_commute πŸ“–mathematicalAddCommute
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
instMul
single
β€”addHom_ext'
AddMonoidHom.ext
single_commute_single
single_commute_single πŸ“–mathematicalAddCommute
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
instMul
single
β€”single_mul_single
AddCommute.eq
Commute.eq
single_eq_zero πŸ“–mathematicalβ€”single
AddMonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finsupp.single_eq_zero
single_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”single_mul_apply_aux
Finsupp.mem_support_iff
eq_neg_add_iff_add_eq
single_mul_apply_aux πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finsupp.sum_single_index
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
Finset.sum_congr
Finsupp.sum_eq_single
MulZeroClass.mul_zero
single_mul_apply_of_not_exists_add πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
single
β€”mul_apply
Finsupp.sum_single_index
Finsupp.sum_fun_zero
single_mul_single πŸ“–mathematicalβ€”AddMonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”mul_def
Finsupp.sum_single_index
MulZeroClass.mul_zero
Finsupp.single_zero
MulZeroClass.zero_mul
single_ne_zero πŸ“–β€”β€”β€”β€”single_eq_zero
single_neg πŸ“–mathematicalβ€”single
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidAlgebra
addAddCommGroup
β€”Finsupp.single_neg
single_pow πŸ“–mathematicalβ€”AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
single
AddMonoid.toNatSMul
β€”pow_zero
zero_nsmul
pow_succ
single_mul_single
succ_nsmul
single_zero πŸ“–mathematicalβ€”single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
β€”Finsupp.single_zero
single_zero_comm πŸ“–mathematicalβ€”AddMonoidAlgebra
CommSemiring.toSemiring
instMul
AddZero.toAdd
AddZeroClass.toAddZero
single
AddZero.toZero
β€”single_commute
AddCommute.zero_left
Commute.all
single_zero_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
single
AddZero.toZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”single_mul_apply_aux
Finsupp.mem_support_iff
zero_add
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
β€”Finsupp.smulCommClass
smul_single πŸ“–mathematicalβ€”AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
Finsupp.smul_single
smul_single' πŸ“–mathematicalβ€”AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”smul_single
sum_single πŸ“–mathematicalβ€”Finsupp.sum
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
addAddCommMonoid
single
β€”Finsupp.sum_single
sum_single_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.sum
single
β€”Finsupp.sum_single_index
uniqueRingEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoidAlgebra
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
uniqueRingEquiv
Finsupp
AddZero.toZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finsupp.instFunLike
Unique.instInhabited
β€”β€”
uniqueRingEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoidAlgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Distrib.toAdd
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
uniqueRingEquiv
Equiv
Finsupp
AddZero.toZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Equiv.instEquivLike
Equiv.symm
Finsupp.equivFunOnFinite
uniqueElim
β€”β€”

MonoidAlgebra

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
5 mathmath: FreeLieAlgebra.Rel.neg, FreeLieAlgebra.Rel.subRight, FreeLieAlgebra.Rel.subLeft, single_neg, neg_apply
addCommMonoid πŸ“–CompOp
52 mathmath: Representation.ofMulActionSelfAsModuleEquiv_symm_apply, instIsCocomm, tensorEquiv.invFun_tmul, liftNC_mul, mul_def, instIsCancelAdd, single_eq_zero, smulCommClass, of_mem_span_of_iff, coe_liftNCAlgHom, smulCommClass_self, distribMulActionHom_ext'_iff, FreeLieAlgebra.liftAux_map_smul, scalarTensorEquiv_tmul, instFree, basis_apply, AddMonoidAlgebra.tensorEquiv.invFun_tmul, singleAddHom_apply, mem_span_support, faithfulSMul, lsingle_apply, tensorEquiv_symm_single, smul_single, coe_add, moduleFinite, smul_of, Representation.ofMulActionSelfAsModuleEquiv_apply, liftNC_single, smul_single', tensorEquiv_tmul, sum_single, smul_apply, lhom_ext'_iff, scalarTensorEquiv_symm_single, comul_single, singleOneRingHom_apply, smulCommClass_symm_self, mapDomain_zero, FreeLieAlgebra.Rel.smulOfTower, single_zero, liftNC_smul, instIsTorsionFree, single_add, isScalarTower_self, lift_def, isCentralScalar, isScalarTower, addHom_ext'_iff, mapDomain_sum, liftNC_one, counit_single, mapDomain_add
commRing πŸ“–CompOp
2 mathmath: CommRingCat.monoidAlgebra_map, CommRingCat.monoidAlgebra_obj
commSemiring πŸ“–CompOp
6 mathmath: instIsPushout, mvPolynomial_aeval_of_surjective_of_closure, isScalarTower_monoidAlgebra, instIsPushout', algebraMap_def, prod_single
curryRingEquiv πŸ“–CompOp
2 mathmath: curryRingEquiv_symm_single, curryRingEquiv_single
distribSMul πŸ“–CompOpβ€”
inhabited πŸ“–CompOpβ€”
instCoeFun πŸ“–CompOpβ€”
instMul πŸ“–CompOp
56 mathmath: mapDomainRingEquiv_single, liftNC_mul, mul_def, opRingEquiv_single, mapDomainRingEquiv_trans, single_one_mul_apply, opRingEquiv_symm_apply, uniqueRingEquiv_apply, mapRangeRingEquiv_single, single_mul_apply, single_algebraMap_eq_algebraMap_mul_of, symm_mapRangeRingEquiv, support_mul_single_eq_image, single_mul_apply_aux, ofMagma_apply, symm_commRingEquiv, opRingEquiv_symm_single, curryRingEquiv_symm_single, FreeLieAlgebra.liftAux_map_mul, mul_apply_mul_eq_mul_of_uniqueMul, single_mul_single, support_mul_single_subset, instIsCancelMulZeroOfIsCancelAddOfUniqueProds, single_commute, instNoZeroDivisorsOfUniqueProds, single_one_comm, mapRangeRingEquiv_apply, instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds, support_mul_single, mul_single_apply_of_not_exists_mul, mul_single_one_apply, mapRangeRingEquiv_trans, support_single_mul_eq_image, curryRingEquiv_single, of_commute, uniqueRingEquiv_symm_apply, support_single_mul, mul_apply, mapDomainRingEquiv_apply, instIsRightCancelMulZeroOfIsCancelAddOfUniqueProds, single_commute_single, single_eq_algebraMap_mul_of, GroupAlgebra.mul_average_left, mul_apply_right, symm_mapDomainRingEquiv, mul_single_apply, support_single_mul_subset, mul_apply_antidiagonal, mapDomain_mul, single_mul_apply_of_not_exists_mul, support_mul, opRingEquiv_apply, commRingEquiv_single_single, GroupAlgebra.mul_average_right, mul_single_apply_aux, mul_apply_left
mul' πŸ“–CompOpβ€”
nonAssocRing πŸ“–CompOp
1 mathmath: intCast_def
nonAssocSemiring πŸ“–CompOp
47 mathmath: Representation.ofMulActionSelfAsModuleEquiv_symm_apply, mapRangeRingHom_single, algHom_ext'_iff, mapDomainRingHom_id, mem_adjoin_support, of_mem_span_of_iff, support_gen_of_gen', LinearMap.sumOfConjugatesEquivariant_apply, mvPolynomial_aeval_of_surjective_of_closure, toRingHom_mapRangeAlgHom, single_algebraMap_eq_algebraMap_mul_of, liftNCRingHom_single, mem_span_support, coe_mapRangeRingHom, isLocalHom_singleOneRingHom, mapRangeRingHom_comp_mapDomainRingHom, freeAlgebra_lift_of_surjective_of_closure, ringHom_ext_iff, mapRangeRingHom_comp_algebraMap, toRingHom_mapDomainRingEquiv, exists_finset_adjoin_eq_top, smul_of, Representation.ofMulActionSelfAsModuleEquiv_apply, Representation.asModuleEquiv_symm_map_rho, Representation.asAlgebraHom_of, singleHom_apply, support_gen_of_gen, LinearMap.equivariantProjection_apply, of_commute, mem_ideal_span_of_image, lift_mapRangeRingHom_algebraMap, of_injective, mapDomainRingHom_comp, equivariantOfLinearOfComm_apply, singleOneRingHom_apply, toRingHom_mapRangeRingEquiv, ringHom_ext'_iff, single_eq_algebraMap_mul_of, mapRangeRingHom_id, mapDomainRingHom_apply, mapDomainRingHom_comp_algebraMap, natCast_def, mapRangeRingHom_comp, of_apply, lift_of, mapRangeRingHom_apply, lift_unique'
nonUnitalCommRing πŸ“–CompOpβ€”
nonUnitalCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocRing πŸ“–CompOpβ€”
nonUnitalNonAssocSemiring πŸ“–CompOp
51 mathmath: mapDomainRingEquiv_single, liftMagma_apply_apply, opRingEquiv_single, mapDomainRingEquiv_trans, FreeNonUnitalNonAssocAlgebra.of_comp_lift, opRingEquiv_symm_apply, FreeLieAlgebra.Rel.addLeft, symm_mapDomainAddEquiv, uniqueRingEquiv_apply, mapDomainNonUnitalRingHom_id, smulCommClass_self, FreeNonUnitalNonAssocAlgebra.lift_unique, mapDomainAddEquiv_single, mapRangeRingEquiv_single, FreeLieAlgebra.liftAux_map_smul, symm_mapRangeRingEquiv, symm_commRingEquiv, FreeLieAlgebra.liftAux_map_add, FreeNonUnitalNonAssocAlgebra.lift_symm_apply, opRingEquiv_symm_single, curryRingEquiv_symm_single, mapRangeAddEquiv_apply, FreeLieAlgebra.liftAux_map_mul, mapDomainAddEquiv_trans, mapRangeAddEquiv_trans, instIsCancelMulZeroOfIsCancelAddOfUniqueProds, FreeLieAlgebra.liftAux_spec, symm_mapRangeAddEquiv, instNoZeroDivisorsOfUniqueProds, mapRangeRingEquiv_apply, nonUnitalAlgHom_ext'_iff, mapDomainNonUnitalRingHom_apply, instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds, liftMagma_symm_apply, mapRangeRingEquiv_trans, curryRingEquiv_single, uniqueRingEquiv_symm_apply, mapDomainNonUnitalAlgHom_apply, mapDomainNonUnitalRingHom_comp, smulCommClass_symm_self, mapDomainRingEquiv_apply, instIsRightCancelMulZeroOfIsCancelAddOfUniqueProds, mapRangeAddEquiv_single, isScalarTower_self, symm_mapDomainRingEquiv, mapDomainAddEquiv_apply, FreeNonUnitalNonAssocAlgebra.lift_of_apply, opRingEquiv_apply, commRingEquiv_single_single, FreeNonUnitalNonAssocAlgebra.hom_ext_iff, FreeNonUnitalNonAssocAlgebra.lift_comp_of
nonUnitalRing πŸ“–CompOpβ€”
nonUnitalSemiring πŸ“–CompOpβ€”
of πŸ“–CompOp
21 mathmath: algHom_ext'_iff, mem_adjoin_support, of_mem_span_of_iff, support_gen_of_gen', mvPolynomial_aeval_of_surjective_of_closure, single_algebraMap_eq_algebraMap_mul_of, mem_span_support, freeAlgebra_lift_of_surjective_of_closure, exists_finset_adjoin_eq_top, smul_of, Representation.asModuleEquiv_symm_map_rho, Representation.asAlgebraHom_of, support_gen_of_gen, of_commute, mem_ideal_span_of_image, of_injective, ringHom_ext'_iff, single_eq_algebraMap_mul_of, of_apply, lift_of, lift_unique'
ofMagma πŸ“–CompOp
3 mathmath: ofMagma_apply, nonUnitalAlgHom_ext'_iff, liftMagma_symm_apply
one πŸ“–CompOp
5 mathmath: support_one_subset, mapDomain_one, one_def, liftNC_one, support_one
semiring πŸ“–CompOp
102 mathmath: finiteType_of_fg, Representation.ofMulActionSelfAsModuleEquiv_symm_apply, isLocalHom_algebraMap, Submodule.exists_isCompl, Representation.asAlgebraHom_single, algHom_ext'_iff, tensorEquiv.invFun_tmul, antipode_single, Subrepresentation.mem_ofSubmodule'_iff, domCongr_toAlgHom, Rep.to_Module_monoidAlgebra_map_aux, mem_adjoin_support, Representation.asAlgebraHom_def, lift_symm_apply, coe_liftNCAlgHom, Representation.smul_ofModule_asModule, LinearMap.sumOfConjugatesEquivariant_apply, mapDomainBialgHom_comp, coe_algebraMap, mapDomain_algebraMap, Representation.ofMulAction_self_smul_eq_mul, mapDomainBialgHom_mapDomainBialgHom, Representation.single_smul, mapRangeAlgHom_single, mapRangeAlgEquiv_trans, domCongr_single, toRingHom_mapRangeAlgHom, scalarTensorEquiv_tmul, single_algebraMap_eq_algebraMap_mul_of, mapDomainAlgHom_id, mapDomainAlgHom_comp, isLocalHom_singleOneRingHom, Subrepresentation.mem_asSubmodule'_iff, Representation.asModuleEquiv_symm_map_smul, mapRangeAlgHom_apply, symm_mapRangeAlgEquiv, lift_unique, tensorEquiv_symm_single, symm_commRingEquiv, lift_apply', Subrepresentation.submoduleSubrepresentationOrderIso_apply, mapDomainBialgHom_apply, mapRangeAlgEquiv_apply, freeAlgebra_lift_of_surjective_of_closure, Representation.asAlgebraHom_single_one, mapRangeRingHom_comp_algebraMap, Representation.isSimpleModule_iff_irreducible_ofModule, Representation.instIsScalarTowerMonoidAlgebraAsModule, curryRingEquiv_symm_single, Subrepresentation.mem_asSubmodule_iff, commAlgEquiv_single_single, isScalarTower_monoidAlgebra, isLocalHom_singleOneAlgHom, finiteType_iff_fg, exists_finset_adjoin_eq_top, Representation.ofMulActionSelfAsModuleEquiv_apply, LinearMap.conjugate_apply, Representation.asModuleEquiv_symm_map_rho, Representation.ofModule_asModule_act, tensorEquiv_tmul, Representation.asAlgebraHom_of, finiteType_iff_group_fg, domCongr_comp_lsingle, domCongr_symm, LinearMap.equivariantProjection_apply, GroupSMul.linearMap_apply, curryRingEquiv_single, scalarTensorEquiv_symm_single, Representation.smul_tprod_one_asModule, algebraMap_def, mem_ideal_span_of_image, lift_apply, lift_mapRangeRingHom_algebraMap, Subrepresentation.subrepresentationSubmoduleOrderIso_symm_apply, Representation.ofModule_asAlgebraHom_apply_apply, symm_commAlgEquiv, curryAlgEquiv_symm_single, single_eq_algebraMap_mul_of, single_pow, domCongr_support, Representation.asModuleEquiv_map_smul, singleOneAlgHom_apply, lift_def, Representation.smul_one_tprod_asModule, Representation.is_simple_module_iff_irreducible_ofModule, Subrepresentation.mem_ofSubmodule_iff, Representation.free_asModule_free, mapDomainAlgHom_apply, mapDomainRingHom_comp_algebraMap, Subrepresentation.subrepresentationSubmoduleOrderIso_apply, Representation.asAlgebraHom_mem_of_forall_mem, domCongr_refl, commRingEquiv_single_single, domCongr_apply, mapDomainBialgHom_id, instIsDomainOfIsCancelAddOfUniqueProds, lift_single, curryAlgEquiv_single, Representation.isSemisimpleModule_iff_isSemisimpleRepresentation_ofModule, Subrepresentation.submoduleSubrepresentationOrderIso_symm_apply, lift_of, lift_unique'
single πŸ“–CompOp
78 mathmath: mapDomainRingEquiv_single, mapRangeRingHom_single, Representation.asAlgebraHom_single, tensorEquiv.invFun_tmul, antipode_single, mul_def, opRingEquiv_single, single_one_mul_apply, single_eq_zero, lift_symm_apply, mapDomainAddEquiv_single, mapRangeRingEquiv_single, coe_algebraMap, single_mul_apply, Representation.single_smul, mapRangeAlgHom_single, domCongr_single, basis_apply, single_algebraMap_eq_algebraMap_mul_of, liftNCRingHom_single, AddMonoidAlgebra.tensorEquiv.invFun_tmul, singleAddHom_apply, intCast_def, support_mul_single_eq_image, lsingle_apply, single_mul_apply_aux, ofMagma_apply, lift_unique, tensorEquiv_symm_single, opRingEquiv_symm_single, Representation.asAlgebraHom_single_one, ringHom_ext_iff, smul_single, curryRingEquiv_symm_single, commAlgEquiv_single_single, single_mul_single, smul_of, support_mul_single_subset, LinearMap.conjugate_apply, liftNC_single, smul_single', single_commute, single_one_comm, sum_single, singleHom_apply, support_mul_single, mul_single_apply_of_not_exists_mul, mul_single_one_apply, support_single_mul_eq_image, GroupSMul.linearMap_apply, curryRingEquiv_single, scalarTensorEquiv_symm_single, comul_single, support_single_mul, mapDomain_single, single_zero, one_def, single_commute_single, curryAlgEquiv_symm_single, single_add, single_eq_algebraMap_mul_of, mapRangeAddEquiv_single, single_neg, single_pow, singleOneAlgHom_apply, mul_single_apply, single_apply, support_single_mul_subset, single_mul_apply_of_not_exists_mul, counit_single, commRingEquiv_single_single, natCast_def, lift_single, curryAlgEquiv_single, sum_single_index, of_apply, mul_single_apply_aux, prod_single
singleAddHom πŸ“–CompOp
3 mathmath: singleAddHom_apply, singleOneRingHom_apply, addHom_ext'_iff
singleHom πŸ“–CompOp
1 mathmath: singleHom_apply
singleOneRingHom πŸ“–CompOp
5 mathmath: isLocalHom_singleOneRingHom, CommRingCat.monoidAlgebra_map, singleOneRingHom_apply, ringHom_ext'_iff, CommRingCat.monoidAlgebra_obj
smulZeroClass πŸ“–CompOp
14 mathmath: smulCommClass, smulCommClass_self, FreeLieAlgebra.liftAux_map_smul, faithfulSMul, smul_single, smul_of, smul_single', smul_apply, smulCommClass_symm_self, FreeLieAlgebra.Rel.smulOfTower, liftNC_smul, isScalarTower_self, isCentralScalar, isScalarTower
unexpander πŸ“–CompOpβ€”
unique πŸ“–CompOpβ€”
uniqueRingEquiv πŸ“–CompOp
2 mathmath: uniqueRingEquiv_apply, uniqueRingEquiv_symm_apply
Β«term__[_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addHom_ext' πŸ“–β€”AddMonoidHom.comp
MonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addCommMonoid
singleAddHom
β€”β€”Finsupp.addHom_ext'
addHom_ext'_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
MonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addCommMonoid
singleAddHom
β€”addHom_ext'
coe_add πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addCommMonoid
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
curryRingEquiv_single πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
MonoidAlgebra
semiring
instMul
Prod.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
curryRingEquiv
single
β€”Finsupp.curry_single
curryRingEquiv_symm_single πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
MonoidAlgebra
semiring
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
curryRingEquiv
single
β€”Finsupp.uncurry_single
ext πŸ“–β€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”β€”Finsupp.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”ext
induction_linear πŸ“–β€”MonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
single
β€”β€”Finsupp.induction_linear
induction_on πŸ“–β€”DFunLike.coe
MonoidHom
MonoidAlgebra
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
MulOne.toMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”Finsupp.induction_linear
smul_single
mul_one
Finsupp.single_zero
instIsCancelAdd πŸ“–mathematicalβ€”IsCancelAdd
MonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addCommMonoid
β€”Finsupp.instIsCancelAdd
intCast_def πŸ“–mathematicalβ€”MonoidAlgebra
Ring.toSemiring
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
nonAssocRing
single
MulOne.toOne
MulOneClass.toMulOne
Ring.toAddGroupWithOne
β€”β€”
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
MulOpposite
β€”Finsupp.isCentralScalar
isLocalHom_singleOneRingHom πŸ“–mathematicalβ€”IsLocalHom
MonoidAlgebra
RingHom
Semiring.toNonAssocSemiring
nonAssocSemiring
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
RingHom.instFunLike
singleOneRingHom
β€”single_one_mul_apply
Finsupp.single_eq_same
mul_single_one_apply
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
β€”Finsupp.isScalarTower
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_def
Finsupp.sum_apply
single_apply
mul_apply_antidiagonal πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finset.sum_filter
Finset.sum_product
Finset.sum_congr
Finset.ext
Finset.sum_subset
Finset.filter_subset
MulZeroClass.zero_mul
Finset.filter.congr_simp
MulZeroClass.mul_zero
mul_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_apply
Finset.sum_congr
Finset.sum_ite_eq'
MulZeroClass.mul_zero
mul_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_apply
Finsupp.sum_comm
Finset.sum_congr
Finset.sum_ite_eq'
MulZeroClass.zero_mul
mul_def πŸ“–mathematicalβ€”MonoidAlgebra
instMul
Finsupp.sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
addCommMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
mul_single_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_single_apply_aux
mul_single_apply_aux πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finsupp.sum_single_index
MulZeroClass.mul_zero
Finset.sum_congr
Finsupp.sum_eq_single
MulZeroClass.zero_mul
mul_single_apply_of_not_exists_mul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
single
β€”mul_apply
Finsupp.sum_single_index
Finsupp.sum_fun_zero
mul_single_one_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
single
MulOne.toOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_single_apply_aux
mul_one
natCast_def πŸ“–mathematicalβ€”MonoidAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
nonAssocSemiring
single
MulOne.toOne
MulOneClass.toMulOne
Semiring.toNonAssocSemiring
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Finsupp.instFunLike
MonoidAlgebra
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
addCommGroup
Ring.toAddCommGroup
β€”β€”
nontrivial πŸ“–mathematicalβ€”Nontrivial
MonoidAlgebra
β€”Finsupp.instNontrivial
ofMagma_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
MonoidAlgebra
instMul
MulHom.funLike
ofMagma
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
of_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MonoidAlgebra
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
of_commute πŸ“–mathematicalCommute
MulOne.toMul
MulOneClass.toMulOne
MonoidAlgebra
instMul
DFunLike.coe
MonoidHom
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
β€”single_commute
Commute.one_left
of_injective πŸ“–mathematicalβ€”MonoidAlgebra
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
β€”NeZero.one
Finsupp.single_eq_single_iff
one_def πŸ“–mathematicalβ€”MonoidAlgebra
one
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
prod_single πŸ“–mathematicalβ€”Finset.prod
MonoidAlgebra
CommSemiring.toSemiring
CommSemiring.toCommMonoid
commSemiring
single
β€”Finset.cons_induction_on
Finset.prod_cons
single_mul_single
ringHom_ext πŸ“–β€”DFunLike.coe
RingHom
MonoidAlgebra
nonAssocSemiring
Semiring.toNonAssocSemiring
RingHom.instFunLike
single
MulOne.toOne
MulOneClass.toMulOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”RingHom.coe_addMonoidHom_injective
Finsupp.addHom_ext
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
single_mul_single
one_mul
mul_one
ringHom_ext' πŸ“–β€”RingHom.comp
MonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
singleOneRingHom
MonoidHom.comp
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHomClass.toMonoidHom
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
of
β€”β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ringHom_ext
ringHom_ext'_iff πŸ“–mathematicalβ€”RingHom.comp
MonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
singleOneRingHom
MonoidHom.comp
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHomClass.toMonoidHom
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
of
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ringHom_ext'
singleAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
MonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddCommMonoid.toAddMonoid
addCommMonoid
AddMonoidHom.instFunLike
singleAddHom
single
β€”β€”
singleHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MonoidAlgebra
MulOneClass.toMulOne
Prod.instMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
nonAssocSemiring
MonoidHom.instFunLike
singleHom
single
β€”β€”
singleOneRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MonoidAlgebra
Semiring.toNonAssocSemiring
nonAssocSemiring
RingHom.instFunLike
singleOneRingHom
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddCommMonoid.toAddMonoid
addCommMonoid
AddMonoidHom.toZeroHom
singleAddHom
MulOne.toOne
MulOneClass.toMulOne
β€”β€”
single_add πŸ“–mathematicalβ€”single
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addCommMonoid
β€”Finsupp.single_add
single_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
single
β€”Finsupp.single_apply
single_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MonoidAlgebra
instMul
single
β€”addHom_ext'
AddMonoidHom.ext
single_commute_single
single_commute_single πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MonoidAlgebra
instMul
single
β€”single_mul_single
Commute.eq
single_eq_zero πŸ“–mathematicalβ€”single
MonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finsupp.single_eq_zero
single_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”single_mul_apply_aux
single_mul_apply_aux πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finsupp.sum_single_index
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
Finset.sum_congr
Finsupp.sum_eq_single
MulZeroClass.mul_zero
single_mul_apply_of_not_exists_mul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
single
β€”mul_apply
Finsupp.sum_single_index
Finsupp.sum_fun_zero
single_mul_single πŸ“–mathematicalβ€”MonoidAlgebra
instMul
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”mul_def
Finsupp.sum_single_index
MulZeroClass.mul_zero
Finsupp.single_zero
MulZeroClass.zero_mul
single_ne_zero πŸ“–β€”β€”β€”β€”β€”
single_neg πŸ“–mathematicalβ€”single
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
MonoidAlgebra
addCommGroup
β€”Finsupp.single_neg
single_one_comm πŸ“–mathematicalβ€”MonoidAlgebra
CommSemiring.toSemiring
instMul
MulOne.toMul
MulOneClass.toMulOne
single
MulOne.toOne
β€”single_commute
Commute.one_left
Commute.all
single_one_mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
single
MulOne.toOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”single_mul_apply_aux
one_mul
single_pow πŸ“–mathematicalβ€”MonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
single
β€”pow_zero
pow_succ
single_mul_single
single_zero πŸ“–mathematicalβ€”single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
β€”Finsupp.single_zero
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
β€”Finsupp.smulCommClass
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
β€”β€”
smul_single πŸ“–mathematicalβ€”MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
smul_single' πŸ“–mathematicalβ€”MonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”smul_single
sum_single πŸ“–mathematicalβ€”Finsupp.sum
MonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
addCommMonoid
single
β€”Finsupp.sum_single
sum_single_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.sum
single
β€”Finsupp.sum_single_index
uniqueRingEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
MonoidAlgebra
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
uniqueRingEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finsupp.instFunLike
Unique.instInhabited
β€”β€”
uniqueRingEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
MonoidAlgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Distrib.toAdd
nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
uniqueRingEquiv
Equiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Equiv.instEquivLike
Equiv.symm
Finsupp.equivFunOnFinite
uniqueElim
β€”β€”

(root)

Definitions

NameCategoryTheorems
AddMonoidAlgebra πŸ“–CompOp
348 mathmath: AddMonoidAlgebra.sup_support_list_prod_le, AddMonoidAlgebra.instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums, AddMonoidAlgebra.singleHom_apply, AddMonoidAlgebra.mapRangeAlgEquiv_trans, AddMonoidAlgebra.instIsCancelAddZeroOfIsCancelAddOfUniqueSums, AddMonoidAlgebra.supDegree_sum_lt, AddMonoidAlgebra.mul_single_apply, AddMonoidAlgebra.lift_apply', addMonoidAlgebraEquivDirectSum_apply, AddMonoidAlgebra.mapDomainRingEquiv_apply, AddMonoidAlgebra.domCongr_comp_lsingle, AddMonoidAlgebra.symm_mapRangeAlgEquiv, AddMonoidAlgebra.mul_apply, Polynomial.ofFinsupp_zero, AddMonoidAlgebra.algHom_ext'_iff, AddMonoidAlgebra.liftNC_mul, AddMonoidAlgebra.of'_mem_span, AddMonoidAlgebra.liftNCRingHom_single, AddMonoidAlgebra.mapDomainNonUnitalRingHom_id, Polynomial.toFinsupp_zsmul, AddMonoidAlgebra.le_infDegree_add, LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, AddMonoidAlgebra.comul_single, AddMonoidAlgebra.isScalarTower_self, AddMonoidAlgebra.mapRangeAlgHom_single, AddMonoidAlgebra.mapRangeAddEquiv_apply, Polynomial.toFinsupp_pow, AddMonoidAlgebra.mapDomainAddEquiv_single, AddMonoidAlgebra.zero_divOf, AddMonoidAlgebra.mapDomainNonUnitalAlgHom_apply, AddMonoidAlgebra.of'_divOf, AddMonoidAlgebra.domCongr_toAlgHom, AddMonoidAlgebra.toRingHom_mapRangeRingEquiv, AddMonoidAlgebra.mapDomainAddEquiv_apply, AddMonoidAlgebra.Monic.supDegree_mul, AddMonoidAlgebra.Monic.supDegree_mul_of_ne_zero_right, AddMonoidAlgebra.instNoZeroDivisorsOfUniqueSums, AddMonoidAlgebra.mapDomain_one, AddMonoidAlgebra.toRingHom_mapDomainRingEquiv, DirectSum.toAddMonoidAlgebra_sub, AddMonoidAlgebra.lift_mapRangeRingHom_algebraMap, AddMonoidAlgebra.supDegree_add_le, AddMonoidAlgebra.instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums, AddMonoidAlgebra.divOfHom_apply_apply, AddMonoidAlgebra.cardinalMk_lift_of_fintype, AddMonoidAlgebra.mapDomainBialgHom_id, AddMonoidAlgebra.mapDomainAlgHom_id, AddMonoidAlgebra.mapRangeRingHom_comp_algebraMap, AddMonoidAlgebra.uniqueRingEquiv_apply, Polynomial.evalβ‚‚_ofFinsupp, AddMonoidAlgebra.opRingEquiv_symm_single, AddMonoidAlgebra.opRingEquiv_symm_apply, AddMonoidAlgebra.intCast_def, Polynomial.ofFinsupp_natCast, AddMonoidAlgebra.algebraMap_def, AddMonoidAlgebra.singleZeroRingHom_apply, AddMonoidAlgebra.instIsTorsionFree, Polynomial.ofFinsupp_sub, AddMonoidAlgebra.counit_single, AddMonoidAlgebra.smulCommClass, AddMonoidAlgebra.mapRangeRingHom_single, AddMonoidAlgebra.supDegree_mul, AddMonoidAlgebra.mapDomainRingHom_comp_algebraMap, AddMonoidAlgebra.of'_commute, AddMonoidAlgebra.Monic.pow, AddMonoidAlgebra.moduleFinite, AddMonoidAlgebra.neg_apply, AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, BoundedContinuousFunction.charAlgHom_apply, AddMonoidAlgebra.single_commute_single, AddMonoidAlgebra.of'_mul_divOf, AddMonoidAlgebra.domCongr_refl, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, AddMonoidAlgebra.decomposeAux_coe, AddMonoidAlgebra.lsingle_apply, AddMonoidAlgebra.of_apply, AddMonoidAlgebra.gradeBy.isInternal, Polynomial.ofFinsupp_pow, Polynomial.toFinsupp_injective, AddMonoidAlgebra.single_add, AddMonoidAlgebra.mvPolynomial_aeval_of_surjective_of_closure, AddMonoidAlgebra.smul_single, AddMonoidAlgebra.mapRangeRingEquiv_trans, AddMonoidAlgebra.mapRangeAddEquiv_trans, DirectSum.toAddMonoidAlgebra_one, AddMonoidAlgebra.supDegree_add_eq_right, AddMonoidAlgebra.Monic.leadingCoeff_mul_eq_left, AddMonoidAlgebra.support_mul_single_subset, AddMonoidAlgebra.tensorEquiv.invFun_tmul, AddMonoidAlgebra.mapRangeRingHom_apply, Polynomial.ofFinsupp_algebraMap, AddMonoidAlgebra.isLocalHom_singleZeroRingHom, AddMonoidAlgebra.smulCommClass_symm_self, AddMonoidAlgebra.le_inf_support_add, AddMonoidAlgebra.sup_support_multiset_prod_le, AddMonoidAlgebra.commAlgEquiv_single_single, AddMonoidAlgebra.ringHom_ext'_iff, AddMonoidAlgebra.Monic.mul, AddMonoidAlgebra.support_single_mul_subset, AddMonoidAlgebra.isScalarTower, AddMonoidAlgebra.isLocalHom_algebraMap, AddMonoidAlgebra.lift_apply, addMonoidAlgebraEquivDirectSum_symm_apply, AddMonoidAlgebra.cardinalMk_of_infinite', AddMonoidAlgebra.mem_ideal_span_of'_image, Polynomial.toFinsupp_eq_zero, Polynomial.ofFinsupp_add, AddMonoidAlgebra.leadingCoeff_add_eq_right, AddMonoidAlgebra.supDegree_zero, AddMonoidAlgebra.mapDomainNonUnitalRingHom_apply, AddMonoidAlgebra.leadingCoeff_eq_zero, Polynomial.ofFinsupp_eq_one, Polynomial.toFinsupp_nsmul, AddMonoidAlgebra.toDirectSum_mul, AddMonoidAlgebra.domCongr_single, AddMonoidAlgebra.leadingCoeff_add_eq_left, AddMonoidAlgebra.prod_single, AddMonoidAlgebra.mul_def, AddMonoidAlgebra.mapDomainBialgHom_apply, AddMonoidAlgebra.coe_algebraMap, AddMonoidAlgebra.le_inf_support_pow, AddMonoidAlgebra.mapRangeRingHom_comp, AddMonoidAlgebra.mapRangeAlgEquiv_apply, AddMonoidAlgebra.supDegree_neg, AddMonoidAlgebra.toDirectSum_natCast, AddMonoidAlgebra.Monic.leadingCoeff_mul_eq_right, AddMonoidAlgebra.of'_dvd_iff_modOf_eq_zero, Polynomial.ofFinsupp_one, AddMonoidAlgebra.toDirectSum_zero, AddMonoidAlgebra.finiteType_of_fg, addMonoidAlgebraAlgEquivDirectSum_symm_apply, AddMonoidAlgebra.apply_add_of_supDegree_le, AddMonoidAlgebra.cardinalMk_lift_of_infinite, DirectSum.toAddMonoidAlgebra_mul, AddMonoidAlgebra.toDirectSum_add, AddMonoidAlgebra.coe_add, AddMonoidAlgebra.cardinalMk_of_fintype, AddMonoidAlgebra.commRingEquiv_single_single, AddMonoidAlgebra.leadingCoeff_zero, AddMonoidAlgebra.mul_of'_modOf, AddMonoidAlgebra.mul_single_zero_apply, Polynomial.toFinsuppIsoLinear_symm_apply_toFinsupp, AddMonoidAlgebra.le_inf_support_list_prod, AddMonoidAlgebra.finiteType_iff_group_fg, DirectSum.toAddMonoidAlgebra_natCast, Polynomial.toFinsupp_one, AddMonoidAlgebra.instIsPushout, AddMonoidAlgebra.instIsPushout', AddMonoidAlgebra.toDirectSum_pow, AddMonoidAlgebra.lift_single, AddMonoidAlgebra.mapDomainAlgHom_apply, Polynomial.toFinsupp_natCast, AddMonoidAlgebra.add_divOf, AddMonoidAlgebra.mapDomainRingHom_comp, AddMonoidAlgebra.lift_symm_apply, AddMonoidAlgebra.mapDomainRingEquiv_trans, AddMonoidAlgebra.faithfulSMul, AddMonoidAlgebra.support_mul_single_eq_image, AddMonoidAlgebra.mul_apply_left, AddMonoidAlgebra.single_zero_comm, AddMonoidAlgebra.GradesBy.decompose_single, AddMonoidAlgebra.singleAddHom_apply, AddMonoidAlgebra.coe_liftNCAlgHom, AddMonoidAlgebra.modOf_add_divOf, Polynomial.ofFinsupp_smul, AddMonoidAlgebra.monic_one, AddMonoidAlgebra.mem_grade_iff', AddMonoidAlgebra.coeff_smul, AddMonoidAlgebra.natCast_def, AddMonoidAlgebra.support_mul, AddMonoidAlgebra.lift_of, AddMonoidAlgebra.coe_mapRangeRingHom, Polynomial.toFinsupp_mul, DirectSum.toAddMonoidAlgebra_zero, AddMonoidAlgebra.nonUnitalAlgHom_ext'_iff, LieAlgebra.LoopAlgebra.toFinsupp_single_tmul, AddMonoidAlgebra.single_mul_apply, AddMonoidAlgebra.support_one_subset, AddMonoidAlgebra.single_mul_apply_of_not_exists_add, AddMonoidAlgebra.mapDomain_algebraMap, AddMonoidAlgebra.single_mem_grade, Polynomial.toFinsuppIsoLinear_apply, AddMonoidAlgebra.exists_finset_adjoin_eq_top, AddMonoidAlgebra.liftMagma_apply_apply, LaurentPolynomial.comul_C, AddMonoidAlgebra.liftNC_smul, AddMonoidAlgebra.mapDomainNonUnitalRingHom_comp, AddMonoidAlgebra.liftNC_single, AddMonoidAlgebra.toDirectSum_intCast, AddMonoidAlgebra.lift_unique', AddMonoidAlgebra.opRingEquiv_single, AddMonoidAlgebra.smul_single', AddMonoidAlgebra.ofMagma_apply, AddMonoidAlgebra.supDegree_leadingCoeff_sum_eq, AddMonoidAlgebra.toRingHom_mapRangeAlgHom, AddMonoidAlgebra.mul_single_apply_aux, AddMonoidAlgebra.sup_support_mul_le, AddMonoidAlgebra.liftMagma_symm_apply, AddMonoidAlgebra.tensorEquiv_tmul, AddMonoidAlgebra.gradeBy.gradedMonoid, Polynomial.toFinsupp_algebraMap, Polynomial.ofFinsupp_neg, AddMonoidAlgebra.cardinalMk_lift_of_infinite', AddMonoidAlgebra.symm_commAlgEquiv, AddMonoidAlgebra.mul_apply_add_eq_mul_of_uniqueAdd, AddMonoidAlgebra.single_mul_single, Polynomial.toFinsupp_eq_one, AddMonoidAlgebra.le_infDegree_mul, AddMonoidAlgebra.mapDomainAlgHom_comp, AddMonoidAlgebra.tensorEquiv_symm_single, AddMonoidAlgebra.le_inf_support_mul, AddMonoidAlgebra.lift_of', AddMonoidAlgebra.mem_grade_iff, AddMonoidAlgebra.curryRingEquiv_symm_single, AddMonoidAlgebra.opRingEquiv_apply, AddMonoidAlgebra.grade.decompose_single, AddMonoidAlgebra.mapDomainRingEquiv_single, AddMonoidAlgebra.mem_adjoin_support, AddMonoidAlgebra.single_eq_zero, Polynomial.toFinsuppIsoAlg_symm_apply_toFinsupp, LieAlgebra.LoopAlgebra.residuePairing_apply_apply, AddMonoidAlgebra.domCongr_support, AddMonoidAlgebra.Monic.supDegree_mul_of_ne_zero_left, AddMonoidAlgebra.lhom_ext'_iff, AddMonoidAlgebra.Monic.supDegree_pow, AddMonoidAlgebra.single_zero, AddMonoidAlgebra.curryAlgEquiv_symm_single, AddMonoidAlgebra.domCongr_symm, AddMonoidAlgebra.supDegree_sub_lt_of_leadingCoeff_eq, Polynomial.toFinsuppIso_apply, AddMonoidAlgebra.uniqueRingEquiv_symm_apply, AddMonoidAlgebra.leadingCoeff_mul, MonoidAlgebra.Submodule.instIsSemisimpleRingAddMonoidAlgebra, AddMonoidAlgebra.mapDomain_mul, AddMonoidAlgebra.algHom_ext_iff, Polynomial.toFinsupp_sum, AddMonoidAlgebra.sup_support_pow_le, AddMonoidAlgebra.symm_mapDomainRingEquiv, DirectSum.toAddMonoidAlgebra_intCast, AddMonoidAlgebra.supDegree_add_eq_left, AddMonoidAlgebra.basis_apply, DirectSum.toAddMonoidAlgebra_add, AddMonoidAlgebra.grade.isInternal, Polynomial.toFinsupp_add, AddMonoidAlgebra.mapRangeRingEquiv_apply, Polynomial.toFinsupp_neg, Polynomial.toFinsupp_smul, AddMonoidAlgebra.mapDomain_zero, AddMonoidAlgebra.supDegree_mul_le, AddMonoidAlgebra.toDirectSum_sub, AddMonoidAlgebra.divOf_add_modOf, Polynomial.ofFinsupp_mul, AddMonoidAlgebra.mapDomainBialgHom_comp, AddMonoidAlgebra.liftNC_one, AddMonoidAlgebra.scalarTensorEquiv_symm_single, AddMonoidAlgebra.of_injective, AddMonoidAlgebra.sup_support_add_le, AddMonoidAlgebra.supDegree_sub_le, AddMonoidAlgebra.mapRangeRingHom_id, Polynomial.toFinsuppIsoAlg_apply, AddMonoidAlgebra.finiteType_iff_fg, AddMonoidAlgebra.support_single_mul, AddMonoidAlgebra.instIsCocomm, Polynomial.toFinsupp_sub, AddMonoidAlgebra.support_single_mul_eq_image, AddMonoidAlgebra.single_pow, AddMonoidAlgebra.instFree, AddMonoidAlgebra.single_zero_mul_apply, AddMonoidAlgebra.mapRangeAddEquiv_single, AddMonoidAlgebra.toDirectSum_neg, AddMonoidAlgebra.domCongr_apply, LaurentPolynomial.comul_C_mul_T, Polynomial.ofFinsupp_zsmul, AddMonoidAlgebra.single_neg, AddMonoidAlgebra.single_mul_apply_aux, AddMonoidAlgebra.mem_span_support', Polynomial.toFinsuppIso_symm_apply, LaurentPolynomial.smul_eq_C_mul, AddMonoidAlgebra.decomposeAux_single, AddMonoidAlgebra.mapDomainAddEquiv_trans, AddMonoidAlgebra.nontrivial, AddMonoidAlgebra.sup_support_finset_prod_le, AddMonoidAlgebra.curryRingEquiv_single, AddMonoidAlgebra.addHom_ext'_iff, addMonoidAlgebraAddEquivDirectSum_symm_apply, DirectSum.toAddMonoidAlgebra_pow, AddMonoidAlgebra.antipode_single, AddMonoidAlgebra.decomposeAux_eq_decompose, Polynomial.ofFinsupp_eq_zero, addMonoidAlgebraRingEquivDirectSum_apply, AddMonoidAlgebra.mapDomain_add, addMonoidAlgebraRingEquivDirectSum_symm_apply, AddMonoidAlgebra.lift_unique, AddMonoidAlgebra.lift_def, AddMonoidAlgebra.symm_mapRangeRingEquiv, AddMonoidAlgebra.instIsCancelAdd, AddMonoidAlgebra.singleZeroAlgHom_apply, AddMonoidAlgebra.mapDomainRingHom_id, addMonoidAlgebraAddEquivDirectSum_apply, AddMonoidAlgebra.le_inf_support_finset_prod, AddMonoidAlgebra.of'_mul_modOf, AddMonoidAlgebra.scalarTensorEquiv_tmul, DirectSum.toAddMonoidAlgebra_neg, LieAlgebra.LoopAlgebra.twoCocycleOfBilinear_coe, AddMonoidAlgebra.le_inf_support_multiset_prod, AddMonoidAlgebra.distribMulActionHom_ext'_iff, Polynomial.ofFinsupp_sum, AddMonoidAlgebra.of'_modOf, Polynomial.toFinsupp_intCast, AddMonoidAlgebra.sum_single, AddMonoidAlgebra.symm_commRingEquiv, AddMonoidAlgebra.single_mem_gradeBy, addMonoidAlgebraAlgEquivDirectSum_apply, AddMonoidAlgebra.single_commute, AddMonoidAlgebra.grade.gradedMonoid, AddMonoidAlgebra.symm_mapDomainAddEquiv, AddMonoidAlgebra.of'_eq_of, AddMonoidAlgebra.isLocalHom_singleZeroAlgHom, AddMonoidAlgebra.isCentralScalar, AddMonoidAlgebra.supDegree_prod_le, AddMonoidAlgebra.mul_apply_right, AddMonoidAlgebra.cardinalMk_of_infinite, Polynomial.toFinsupp_zero, AddMonoidAlgebra.curryAlgEquiv_single, Polynomial.ofFinsupp_nsmul, AddMonoidAlgebra.smulCommClass_self, AddMonoidAlgebra.mem_gradeBy_iff, AddMonoidAlgebra.mul_single_apply_of_not_exists_add, AddMonoidAlgebra.toDirectSum_one, AddMonoidAlgebra.one_def, AddMonoidAlgebra.mapDomain_sum, AddMonoidAlgebra.mapRangeAlgHom_apply, AddMonoidAlgebra.mapRangeRingHom_comp_mapDomainRingHom, AddMonoidAlgebra.mem_span_support, AddMonoidAlgebra.mapRangeRingEquiv_single, AddMonoidAlgebra.support_mul_single, AddMonoidAlgebra.mapDomain_injective, AddMonoidAlgebra.freeAlgebra_lift_of_surjective_of_closure, Polynomial.ofFinsupp_intCast, AddMonoidAlgebra.symm_mapRangeAddEquiv, AddMonoidAlgebra.mapDomainRingHom_apply, AddMonoidAlgebra.mul_apply_antidiagonal, AddMonoidAlgebra.support_one, AddMonoidAlgebra.instIsDomainOfIsCancelAddOfUniqueSums, AddMonoidAlgebra.apply_supDegree_add_supDegree, AddMonoidAlgebra.vaddAssocClass_addMonoidAlgebra, AddMonoidAlgebra.supDegree_sum_le, AddMonoidAlgebra.mul_of'_divOf

---

← Back to Index