Documentation Verification Report

Degree

πŸ“ Source: Mathlib/Algebra/MonoidAlgebra/Degree.lean

Statistics

MetricCount
DefinitionsinfDegree, leadingCoeff, supDegree
3
TheoremsleadingCoeff_mul_eq_left, leadingCoeff_mul_eq_right, mul, ne_zero, pow, supDegree_mul, supDegree_mul_of_ne_zero_left, supDegree_mul_of_ne_zero_right, supDegree_pow, apply_add_of_supDegree_le, apply_eq_zero_of_not_le_supDegree, apply_supDegree_add_supDegree, exists_supDegree_mem_support, infDegree_withTop_some_comp, le_infDegree_add, le_infDegree_mul, le_inf_support_add, le_inf_support_finset_prod, le_inf_support_list_prod, le_inf_support_mul, le_inf_support_multiset_prod, le_inf_support_pow, leadingCoeff_add_eq_left, leadingCoeff_add_eq_right, leadingCoeff_eq_zero, leadingCoeff_mul, leadingCoeff_ne_zero, leadingCoeff_single, leadingCoeff_zero, monic_one, ne_zero_of_not_supDegree_le, ne_zero_of_supDegree_ne_bot, sum_ne_zero_of_injOn_supDegree, sum_ne_zero_of_injOn_supDegree', supDegree_add_eq_left, supDegree_add_eq_right, supDegree_add_le, supDegree_eq_of_isMaxOn, supDegree_eq_of_max, supDegree_leadingCoeff_sum_eq, supDegree_mem_range, supDegree_mem_support, supDegree_mul, supDegree_mul_le, supDegree_neg, supDegree_prod_le, supDegree_single, supDegree_single_ne_zero, supDegree_sub_le, supDegree_sub_lt_of_leadingCoeff_eq, supDegree_sum_le, supDegree_sum_lt, supDegree_withBot_some_comp, supDegree_zero, sup_support_add_le, sup_support_finset_prod_le, sup_support_list_prod_le, sup_support_mul_le, sup_support_multiset_prod_le, sup_support_pow_le
60
Total63

AddMonoidAlgebra

Definitions

NameCategoryTheorems
infDegree πŸ“–CompOp
3 mathmath: le_infDegree_add, le_infDegree_mul, infDegree_withTop_some_comp
leadingCoeff πŸ“–CompOp
13 mathmath: Monic.leadingCoeff_mul_eq_left, MvPolynomial.leadingCoeff_esymmAlgHomMonomial, leadingCoeff_add_eq_right, leadingCoeff_eq_zero, leadingCoeff_add_eq_left, Monic.leadingCoeff_mul_eq_right, leadingCoeff_zero, MvPolynomial.leadingCoeff_toLex_C, leadingCoeff_single, supDegree_leadingCoeff_sum_eq, leadingCoeff_mul, MvPolynomial.leadingCoeff_toLex, apply_supDegree_add_supDegree
supDegree πŸ“–CompOp
28 mathmath: supDegree_single, Monic.supDegree_mul, Monic.supDegree_mul_of_ne_zero_right, supDegree_add_le, MvPolynomial.supDegree_esymmAlgHomMonomial, supDegree_mem_range, supDegree_mul, supDegree_eq_of_max, supDegree_zero, supDegree_neg, MvPolynomial.supDegree_esymm, exists_supDegree_mem_support, MvPolynomial.supDegree_toLex_C, Polynomial.supDegree_eq_degree, Monic.supDegree_mul_of_ne_zero_left, Monic.supDegree_pow, supDegree_mul_le, supDegree_sub_le, supDegree_single_ne_zero, supDegree_eq_of_isMaxOn, MvPolynomial.IsSymmetric.antitone_supDegree, MvPolynomial.leadingCoeff_toLex, supDegree_withBot_some_comp, Polynomial.supDegree_eq_natDegree, supDegree_prod_le, supDegree_mem_support, apply_supDegree_add_supDegree, supDegree_sum_le

Theorems

NameKindAssumesProvesValidatesDepends On
apply_add_of_supDegree_le πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_apply
Finset.sum_congr
Finset.sum_eq_single
Finset.sum_eq_zero
addLeftMono_of_addLeftStrictMono
LT.lt.ne
add_lt_add_of_lt_of_le
LE.le.lt_of_ne
LE.le.trans
Finset.le_sup
Finsupp.notMem_support_iff
MulZeroClass.zero_mul
add_lt_add_right
MulZeroClass.mul_zero
apply_eq_zero_of_not_le_supDegree πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Finset.le_sup
Finsupp.mem_support_iff
apply_supDegree_add_supDegree πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
AddMonoidAlgebra
instMul
Function.invFun
Zero.instNonempty
AddZero.toZero
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
leadingCoeff
β€”Zero.instNonempty
eq_or_ne
MulZeroClass.zero_mul
Function.invFun.congr_simp
supDegree_zero
MulZeroClass.mul_zero
exists_supDegree_mem_support
Function.leftInverse_invFun
apply_add_of_supDegree_le
Eq.le
exists_supDegree_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Finset.exists_mem_eq_sup
Finsupp.support_nonempty_iff
infDegree_withTop_some_comp πŸ“–mathematicalFinset.Nonempty
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
infDegree
WithTop
WithTop.semilatticeInf
WithTop.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
WithTop.some
β€”Finset.coe_inf'
Finset.inf'_eq_inf
le_infDegree_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
infDegree
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
β€”le_inf_support_add
le_infDegree_mul πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
infDegree
DFunLike.coe
AddHom
AddZero.toAdd
AddZeroClass.toAddZero
AddHom.funLike
AddMonoidAlgebra
instMul
β€”le_inf_support_mul
Eq.ge
map_add
AddHom.addHomClass
le_inf_support_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
β€”sup_support_add_le
le_inf_support_finset_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sum
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
AddMonoidAlgebra
CommSemiring.toCommMonoid
commSemiring
β€”Multiset.map_map
le_inf_support_multiset_prod
le_inf_support_list_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidAlgebra
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
zero
β€”List.Perm.foldr_eq
instLeftCommutativeOfCommutativeOfAssociative
instCommutativeMin_mathlib
instAssociativeMin_mathlib
OrderDual.ofDual_le_ofDual
sup_support_list_prod_le
OrderDual.addLeftMono
OrderDual.addRightMono
le_inf_support_mul πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
instMul
β€”sup_support_mul_le
OrderDual.addLeftMono
OrderDual.addRightMono
le_inf_support_multiset_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Multiset.sum
Multiset.map
AddMonoidAlgebra
CommSemiring.toSemiring
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Multiset.prod
CommSemiring.toCommMonoid
commSemiring
β€”List.Perm.foldr_eq
instLeftCommutativeOfCommutativeOfAssociative
instCommutativeMin_mathlib
instAssociativeMin_mathlib
OrderDual.ofDual_le_ofDual
sup_support_multiset_prod_le
OrderDual.addLeftMono
OrderDual.addRightMono
le_inf_support_pow πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
Finset.inf
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”List.Perm.foldr_eq
instLeftCommutativeOfCommutativeOfAssociative
instCommutativeMin_mathlib
instAssociativeMin_mathlib
OrderDual.ofDual_le_ofDual
sup_support_pow_le
OrderDual.addLeftMono
OrderDual.addRightMono
leadingCoeff_add_eq_left πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
leadingCoeff
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
AddZero.toAdd
β€”Zero.instNonempty
supDegree_mem_range
ne_zero_of_not_supDegree_le
LT.lt.not_ge
leadingCoeff.eq_1
supDegree_add_eq_left
Finsupp.add_apply
apply_eq_zero_of_not_le_supDegree
Function.apply_invFun_apply
add_zero
leadingCoeff_add_eq_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
leadingCoeff
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
AddZero.toAdd
β€”Zero.instNonempty
add_comm
leadingCoeff_add_eq_left
leadingCoeff_eq_zero πŸ“–mathematicalβ€”leadingCoeff
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
nonUnitalNonAssocSemiring
AddZero.toAdd
β€”Zero.instNonempty
Function.mtr
leadingCoeff.eq_1
Finsupp.mem_support_iff
supDegree_mem_support
leadingCoeff_zero
leadingCoeff_mul πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
leadingCoeff
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Zero.instNonempty
eq_or_ne
leadingCoeff.congr_simp
MulZeroClass.zero_mul
MulZeroClass.mul_zero
apply_supDegree_add_supDegree
supDegree_mul
mul_ne_zero
leadingCoeff_eq_zero
leadingCoeff.eq_1
leadingCoeff_ne_zero πŸ“–β€”β€”β€”β€”Iff.ne
Zero.instNonempty
leadingCoeff_eq_zero
leadingCoeff_single πŸ“–mathematicalβ€”leadingCoeff
single
β€”leadingCoeff.eq_1
supDegree_single
Function.invFun.congr_simp
Finsupp.single_zero
Function.leftInverse_invFun
single_apply
leadingCoeff_zero πŸ“–mathematicalβ€”leadingCoeff
AddMonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
monic_one πŸ“–mathematicalβ€”Monic
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidAlgebra
zero
β€”Zero.instNonempty
Monic.eq_1
one_def
leadingCoeff_single
ne_zero_of_not_supDegree_le πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
β€”β€”ne_zero_of_supDegree_ne_bot
bot_le
ne_zero_of_supDegree_ne_bot πŸ“–β€”β€”β€”β€”supDegree_zero
sum_ne_zero_of_injOn_supDegree πŸ“–β€”Finset.Nonempty
Set.InjOn
AddMonoidAlgebra
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset
Finset.instSetLike
β€”β€”sum_ne_zero_of_injOn_supDegree'
sum_ne_zero_of_injOn_supDegree' πŸ“–β€”Finset
Finset.instMembership
Set.InjOn
AddMonoidAlgebra
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset.instSetLike
β€”β€”Finset.exists_mem_eq_sup
Eq.trans_ne
Finset.sum_eq_single_of_mem
Mathlib.Tactic.Push.not_forall_eq
ne_zero_of_supDegree_ne_bot
LE.le.lt_of_ne
LE.le.trans_eq
Finset.le_sup
Set.InjOn.ne
Zero.instNonempty
supDegree_leadingCoeff_sum_eq
LT.lt.ne_bot
supDegree_add_eq_left πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
AddZero.toAdd
AddZeroClass.toAddZero
β€”LE.le.antisymm
LE.le.trans
supDegree_add_le
sup_le
le_rfl
LT.lt.le
exists_supDegree_mem_support
ne_zero_of_not_supDegree_le
LT.lt.not_ge
Finset.le_sup
Finsupp.mem_support_iff
Finsupp.add_apply
apply_eq_zero_of_not_le_supDegree
add_zero
supDegree_add_eq_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
nonUnitalNonAssocSemiring
AddZero.toAdd
AddZeroClass.toAddZero
β€”add_comm
supDegree_add_eq_left
supDegree_add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
SemilatticeSup.toMax
β€”sup_support_add_le
supDegree_eq_of_isMaxOn πŸ“–mathematicalFinset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsMaxOn
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.coe
Finset.instSetLike
supDegreeβ€”sup_eq_of_isMaxOn
supDegree_eq_of_max πŸ“–mathematicalSet
Set.instMembership
Set.range
Finset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.invFun
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegreeβ€”Zero.instNonempty
sup_eq_of_max
supDegree_leadingCoeff_sum_eq πŸ“–mathematicalFinset
Finset.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
Finset.sum
AddMonoidAlgebra
addAddCommMonoid
leadingCoeff
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
β€”Zero.instNonempty
Finset.add_sum_erase
Finset.sum_empty
add_zero
supDegree_sum_lt
Finset.mem_erase
supDegree_add_eq_left
leadingCoeff_add_eq_left
supDegree_mem_range πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_supDegree_mem_support
supDegree_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.invFun
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Zero.instNonempty
exists_supDegree_mem_support
Function.leftInverse_invFun
supDegree_mul πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidAlgebra
instMul
β€”Zero.instNonempty
supDegree_eq_of_max
AddSubsemigroup.add_mem
SetLike.mem_coe
AddMemClass.add_mem
AddSubsemigroup.instAddMemClass
supDegree_mem_range
apply_supDegree_add_supDegree
addLeftMono_of_addLeftStrictMono
addRightMono_of_addRightStrictMono
LE.le.trans
Finset.le_sup
supDegree_mul_le
supDegree_mul_le πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
AddMonoidAlgebra
instMul
β€”sup_support_mul_le
Eq.le
supDegree_neg πŸ“–mathematicalβ€”supDegree
Ring.toSemiring
AddMonoidAlgebra
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
addAddCommGroup
β€”supDegree.eq_1
Finsupp.support_neg
supDegree_prod_le πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
CommSemiring.toSemiring
Finset.prod
AddMonoidAlgebra
CommSemiring.toCommMonoid
commSemiring
Finset.sum
β€”Finset.induction
Finset.prod_empty
Finset.sum_empty
one_def
supDegree_single
bot_le
Eq.le
Finset.prod_insert
Finset.sum_insert
LE.le.trans
supDegree_mul_le
add_le_add_right
supDegree_single πŸ“–mathematicalβ€”supDegree
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”Finsupp.single_zero
instIsEmptyFalse
supDegree_single_ne_zero
supDegree_single_ne_zero πŸ“–mathematicalβ€”supDegree
single
β€”supDegree.eq_1
Finsupp.support_single_ne_zero
Finset.sup_singleton
supDegree_sub_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
Ring.toSemiring
AddMonoidAlgebra
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addAddCommGroup
SemilatticeSup.toMax
β€”sub_eq_add_neg
supDegree_neg
supDegree_add_le
supDegree_sub_lt_of_leadingCoeff_eq πŸ“–mathematicalsupDegree
Ring.toSemiring
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
AddMonoidAlgebra
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
nonAssocRing
β€”Zero.instNonempty
LE.le.lt_of_ne
LE.le.trans
supDegree_sub_le
sup_idem
le_refl
leadingCoeff.eq_1
leadingCoeff_eq_zero
sub_eq_zero
Finsupp.sub_apply
supDegree_sum_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
supDegree
Finset.sum
AddMonoidAlgebra
addAddCommMonoid
Finset.sup
β€”LE.le.trans_eq
Finset.sup_mono
Finsupp.support_finset_sum
Finset.sup_biUnion
supDegree_sum_lt πŸ“–mathematicalFinset.Nonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
supDegree
Lattice.toSemilatticeSup
Finset.sum
AddMonoidAlgebra
addAddCommMonoid
β€”LE.le.trans_lt
supDegree_sum_le
Finset.sup_lt_iff
bot_le
supDegree_withBot_some_comp πŸ“–mathematicalFinset.Nonempty
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
supDegree
WithBot
WithBot.semilatticeSup
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
WithBot.some
β€”Finset.coe_sup'
Finset.sup'_eq_sup
supDegree_zero πŸ“–mathematicalβ€”supDegree
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
AddZero.toAdd
AddZeroClass.toAddZero
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”Finset.sup_empty
sup_support_add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
addAddCommMonoid
SemilatticeSup.toMax
β€”LE.le.trans_eq
Finset.sup_mono
Finsupp.support_add
Finset.sup_union
sup_support_finset_prod_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
AddMonoidAlgebra
CommSemiring.toCommMonoid
commSemiring
Finset.sum
β€”LE.le.trans_eq
sup_support_multiset_prod_le
Multiset.map_map
sup_support_list_prod_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
instMul
zero
β€”Finset.sup_le_iff
Finset.mem_singleton
Finsupp.support_single_subset
le_imp_le_of_le_of_le
sup_support_mul_le
le_refl
add_le_add_right
sup_support_mul_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
instMul
β€”le_imp_le_of_le_of_le
Finset.sup_mono
support_mul
le_refl
Finset.sup_add_le
add_le_add_left
Finset.le_sup
add_le_add_right
sup_support_multiset_prod_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Multiset.prod
AddMonoidAlgebra
CommSemiring.toCommMonoid
commSemiring
Multiset.sum
Multiset.map
β€”Multiset.quot_mk_to_coe''
Multiset.map_coe
Multiset.sum_coe
Multiset.prod_coe
sup_support_list_prod_le
sup_support_pow_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Finset.sup
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
AddMonoid.toNatSMul
β€”List.prod_replicate
List.sum_replicate
LE.le.trans_eq
sup_support_list_prod_le

AddMonoidAlgebra.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
leadingCoeff_mul_eq_left πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra.leadingCoeff
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
eq_or_ne
MulZeroClass.zero_mul
AddMonoidAlgebra.leadingCoeff.eq_1
supDegree_mul_of_ne_zero_left
AddMonoidAlgebra.apply_supDegree_add_supDegree
mul_one
leadingCoeff_mul_eq_right πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra.leadingCoeff
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
eq_or_ne
MulZeroClass.mul_zero
AddMonoidAlgebra.leadingCoeff.eq_1
supDegree_mul_of_ne_zero_right
AddMonoidAlgebra.apply_supDegree_add_supDegree
one_mul
mul πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
eq_1
leadingCoeff_mul_eq_left
ne_zero πŸ“–β€”AddMonoidAlgebra.Monicβ€”β€”NeZero.one
AddMonoidAlgebra.leadingCoeff.congr_simp
pow πŸ“–mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidAlgebra.semiring
β€”Zero.instNonempty
pow_zero
AddMonoidAlgebra.monic_one
pow_succ'
mul
supDegree_mul πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra.supDegree
Lattice.toSemilatticeSup
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
subsingleton_or_nontrivial
Subsingleton.eq_zero
Unique.instSubsingleton
MulZeroClass.mul_zero
AddMonoidAlgebra.supDegree_zero
supDegree_mul_of_ne_zero_left
ne_zero
supDegree_mul_of_ne_zero_left πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra.supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
subsingleton_or_nontrivial
Unique.instSubsingleton
AddMonoidAlgebra.supDegree_mul
mul_one
AddMonoidAlgebra.leadingCoeff_eq_zero
ne_zero
supDegree_mul_of_ne_zero_right πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoidAlgebra.Monic
Zero.instNonempty
AddZero.toZero
AddMonoidAlgebra.supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”Zero.instNonempty
subsingleton_or_nontrivial
Unique.instSubsingleton
AddMonoidAlgebra.supDegree_mul
one_mul
AddMonoidAlgebra.leadingCoeff_eq_zero
ne_zero
supDegree_pow πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidAlgebra.Monic
Zero.instNonempty
AddMonoidAlgebra.supDegree
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidAlgebra.semiring
AddMonoid.toNatSMul
β€”Zero.instNonempty
pow_zero
zero_nsmul
AddMonoidAlgebra.one_def
AddMonoidAlgebra.supDegree_single
one_ne_zero
NeZero.one
pow_succ'
supDegree_mul_of_ne_zero_left
pow
ne_zero
succ_nsmul'

---

← Back to Index