Documentation Verification Report

NoZeroDivisors

๐Ÿ“ Source: Mathlib/Algebra/MonoidAlgebra/NoZeroDivisors.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsCancelAddZeroOfIsCancelAddOfUniqueSums, instIsDomainOfIsCancelAddOfUniqueSums, instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums, instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums, instNoZeroDivisorsOfUniqueSums, mul_apply_add_eq_mul_of_uniqueAdd, instIsCancelMulZeroOfIsCancelAddOfUniqueProds, instIsDomainOfIsCancelAddOfUniqueProds, instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds, instIsRightCancelMulZeroOfIsCancelAddOfUniqueProds, instNoZeroDivisorsOfUniqueProds, mul_apply_mul_eq_mul_of_uniqueMul
12
Total12

AddMonoidAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCancelAddZeroOfIsCancelAddOfUniqueSums ๐Ÿ“–mathematicalโ€”IsCancelMulZero
AddMonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums
IsCancelMulZero.toIsLeftCancelMulZero
instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums
IsCancelMulZero.toIsRightCancelMulZero
instIsDomainOfIsCancelAddOfUniqueSums ๐Ÿ“–mathematicalโ€”IsDomain
AddMonoidAlgebra
semiring
โ€”instIsCancelAddZeroOfIsCancelAddOfUniqueSums
IsDomain.toIsCancelMulZero
nontrivial
IsDomain.toNontrivial
Zero.instNonempty
instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums ๐Ÿ“–mathematicalโ€”IsLeftCancelMulZero
AddMonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”Finset.eraseInduction
Finset.eq_empty_or_nonempty
Finsupp.support_eq_empty
Finset.union_eq_empty
UniqueSums.uniqueAdd_of_nonempty
Finsupp.support_nonempty_iff
mul_apply_add_eq_mul_of_uniqueAdd
UniqueAdd.mono
subset_rfl
Finset.instReflSubset
Finset.subset_union_left
mul_left_cancelโ‚€
Finsupp.mem_support_iff
Finset.subset_union_right
Finsupp.erase_add_single
add_right_cancel_iff
IsCancelAdd.toIsRightCancelAdd
instIsCancelAdd
mul_add
Distrib.leftDistribClass
Finsupp.support_erase
Finset.erase_union_distrib
instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums ๐Ÿ“–mathematicalโ€”IsRightCancelMulZero
AddMonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”MulOpposite.isLeftCancelMulZero_iff
Function.Injective.isLeftCancelMulZero
RingEquiv.injective
map_zero
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums
MulOpposite.instIsCancelAdd
MulOpposite.instIsLeftCancelMulZeroOfIsRightCancelMulZero
UniqueSums.instAddOpposite
instNoZeroDivisorsOfUniqueSums ๐Ÿ“–mathematicalโ€”NoZeroDivisors
AddMonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
UniqueSums.uniqueAdd_of_nonempty
Finsupp.support_nonempty_iff
Finsupp.mem_support_iff
mul_ne_zero
mul_apply_add_eq_mul_of_uniqueAdd
mul_apply_add_eq_mul_of_uniqueAdd ๐Ÿ“–mathematicalUniqueAdd
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Finsupp
Finsupp.instFunLike
AddMonoidAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”mul_apply
Finset.sum_congr
Finset.sum_product'
Finset.sum_eq_single
Finset.mem_product
not_and_or
Finsupp.notMem_support_iff
MulZeroClass.zero_mul
MulZeroClass.mul_zero

MonoidAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCancelMulZeroOfIsCancelAddOfUniqueProds ๐Ÿ“–mathematicalโ€”IsCancelMulZero
MonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds
IsCancelMulZero.toIsLeftCancelMulZero
instIsRightCancelMulZeroOfIsCancelAddOfUniqueProds
IsCancelMulZero.toIsRightCancelMulZero
instIsDomainOfIsCancelAddOfUniqueProds ๐Ÿ“–mathematicalโ€”IsDomain
MonoidAlgebra
semiring
โ€”instIsCancelMulZeroOfIsCancelAddOfUniqueProds
IsDomain.toIsCancelMulZero
nontrivial
IsDomain.toNontrivial
One.instNonempty
instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds ๐Ÿ“–mathematicalโ€”IsLeftCancelMulZero
MonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”Finset.eraseInduction
Finset.eq_empty_or_nonempty
UniqueProds.uniqueMul_of_nonempty
Finsupp.support_nonempty_iff
mul_apply_mul_eq_mul_of_uniqueMul
UniqueMul.mono
subset_rfl
Finset.instReflSubset
Finset.subset_union_left
mul_left_cancelโ‚€
Finsupp.mem_support_iff
Finset.subset_union_right
Finsupp.erase_add_single
IsCancelAdd.toIsRightCancelAdd
instIsCancelAdd
mul_add
Distrib.leftDistribClass
Finsupp.support_erase
Finset.erase_union_distrib
instIsRightCancelMulZeroOfIsCancelAddOfUniqueProds ๐Ÿ“–mathematicalโ€”IsRightCancelMulZero
MonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”MulOpposite.isLeftCancelMulZero_iff
Function.Injective.isLeftCancelMulZero
RingEquiv.injective
map_zero
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
instIsLeftCancelMulZeroOfIsCancelAddOfUniqueProds
MulOpposite.instIsCancelAdd
MulOpposite.instIsLeftCancelMulZeroOfIsRightCancelMulZero
UniqueProds.instMulOpposite
instNoZeroDivisorsOfUniqueProds ๐Ÿ“–mathematicalโ€”NoZeroDivisors
MonoidAlgebra
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
nonUnitalNonAssocSemiring
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
UniqueProds.uniqueMul_of_nonempty
Finsupp.support_nonempty_iff
Finsupp.mem_support_iff
mul_ne_zero
mul_apply_mul_eq_mul_of_uniqueMul
mul_apply_mul_eq_mul_of_uniqueMul ๐Ÿ“–mathematicalUniqueMul
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Finsupp
Finsupp.instFunLike
MonoidAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”mul_apply
Finset.sum_congr
Finset.sum_eq_single
not_and_or
Finsupp.notMem_support_iff
MulZeroClass.zero_mul
MulZeroClass.mul_zero

---

โ† Back to Index