Documentation Verification Report

Comap

πŸ“ Source: Mathlib/Algebra/MvPolynomial/Comap.lean

Statistics

MetricCount
Definitionscomap, comapEquiv
2
TheoremscomapEquiv_coe, comapEquiv_symm_coe, comap_apply, comap_comp, comap_comp_apply, comap_eq_id_of_eq_id, comap_id, comap_id_apply, comap_rename
9
Total11

MvPolynomial

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
9 mathmath: comapEquiv_symm_coe, comapEquiv_coe, comap_id, comap_comp_apply, comap_comp, comap_rename, comap_apply, comap_id_apply, comap_eq_id_of_eq_id
comapEquiv πŸ“–CompOp
2 mathmath: comapEquiv_symm_coe, comapEquiv_coe

Theorems

NameKindAssumesProvesValidatesDepends On
comapEquiv_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
comapEquiv
comap
AlgHomClass.toAlgHom
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
comapEquiv_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
comapEquiv
comap
AlgHomClass.toAlgHom
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”β€”
comap_apply πŸ“–mathematicalβ€”comap
DFunLike.coe
AlgHom
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
AlgHom.funLike
aeval
X
β€”β€”
comap_comp πŸ“–mathematicalβ€”comap
AlgHom.comp
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
β€”comap_comp_apply
comap_comp_apply πŸ“–mathematicalβ€”comap
AlgHom.comp
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
β€”evalβ‚‚Hom_congr
AlgHom.comp_apply
aeval_unique
map_evalβ‚‚Hom
RingHom.ext
aeval_C
comap_eq_id_of_eq_id πŸ“–mathematicalDFunLike.coe
AlgHom
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
AlgHom.funLike
comapβ€”algHom_ext
comap_id_apply
comap_id πŸ“–mathematicalβ€”comap
AlgHom.id
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
β€”comap_id_apply
comap_id_apply πŸ“–mathematicalβ€”comap
AlgHom.id
MvPolynomial
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
β€”aeval_X
comap_rename πŸ“–mathematicalβ€”comap
rename
β€”rename_X
aeval_X

---

← Back to Index