instCommRingMvPolynomial 📖 | CompOp | 283 mathmath: AlgebraicGeometry.AffineSpace.map_Spec_map, dvd_monomial_one_iff_exists, KaehlerDifferential.mvPolynomialBasis_apply, coeff_neg, MonomialOrder.sPolynomial_leadingTerm_mul', degrees_neg, Algebra.PreSubmersivePresentation.jacobiMatrix_naive, isJacobsonRing, AlgebraicGeometry.AffineSpace.map_toSpecMvPoly_assoc, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_snd, MonomialOrder.monic_X_sub_C, AlgebraicIndependent.of_aeval, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv, Algebra.Generators.H1Cotangent.δAux_mul, Algebra.Presentation.naive_toGenerators, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, universalFactorizationMap_comp_map, Algebra.PreSubmersivePresentation.ofHasCoeffs_map, Algebra.Generators.cotangentSpaceBasis_apply, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, instIsReduced, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, KaehlerDifferential.mvPolynomialBasis_repr_D_X, Algebra.Generators.toAlgHom_ofComp_localizationAway, Algebra.Presentation.localizationAway_relation, StandardEtalePresentation.toPresentation_algebra_smul, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, vars_sub_of_disjoint, exists_dvd_map_of_isAlgebraic, irreducible_mul_X_add, MonomialOrder.degree_sub_le, WittVector.mul_polyOfInterest_aux2, Algebra.Generators.compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, sum_antidiagonal_card_esymm_psum_eq_zero, Algebra.PreSubmersivePresentation.ofHasCoeffs_relation, MonomialOrder.div_single, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_appTop_coord, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, Algebra.PreSubmersivePresentation.ofHasCoeffs_σ', Algebra.Presentation.quotientEquiv_symm, Algebra.Generators.H1Cotangent.δAux_C, Algebra.Generators.naive_val, instIsIntegralMvPolynomial, Algebra.Generators.compLocalizationAwayAlgHom_X_inl, WeierstrassCurve.Jacobian.polynomialY_eq, MonomialOrder.sPolynomial_self, Algebra.Presentation.naive_relation, transcendental_polynomial_aeval_X_iff, eval₂_neg, Algebra.SubmersivePresentation.ofSubsingleton_relation, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, Algebra.IsSmoothAt.exists_isStandardEtale_mvPolynomial, xInTermsOfW_eq, eq_zero_of_eval_eq_zero, transcendental_supported_X_iff, algebraicIndependent_polynomial_aeval_X, MonomialOrder.degree_neg, Algebra.SubmersivePresentation.jacobianRelations_spec, LinearMap.toMvPolynomial_add, WeierstrassCurve.Projective.polynomialZ_eq, TensorProduct.toIntegralClosure_mvPolynomial_bijective, IsHomogeneous.sub, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_algebraMap_apply, quotient_map_C_eq_zero, AlgebraicClosure.instIsAlgClosureOfIsAlgebraic, Algebra.Generators.H1Cotangent.δAux_monomial, Algebra.Generators.cotangentSpaceBasis_repr_tmul, MonomialOrder.monic_X_add_C, vars_sub_subset, AlgebraicIndependent.lift_reprField, wittPolynomial_one, Algebra.Generators.H1Cotangent.δAux_toAlgHom, IsLocalization.Away.mvPolynomialQuotientEquiv_apply, Algebra.Presentation.naive_relation_apply, LinearMap.toMvPolynomial_zero, WittVector.mul_polyOfInterest_aux4, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, Algebra.Generators.localizationAway_σ, finitePresentation_universalFactorizationMap, eval_neg, Algebra.Generators.sq_ker_comp_le_ker_compLocalizationAwayAlgHom, dvd_monomial_iff_exists, X_dvd_mul_iff, AlgebraicGeometry.AffineSpace.SpecIso_inv_appTop_coord, Algebra.PreSubmersivePresentation.naive_toPresentation, MonomialOrder.span_leadingTerm_eq_span_monomial', WittVector.bind₁_wittMulN_wittPolynomial, dvd_X_mul_iff, MonomialOrder.degree_X_sub_C, xInTermsOfW_aux, irreducible_sumSMulX, degreeOf_sub_le, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly_assoc, vars_neg, combinatorial_nullstellensatz_exists_linearCombination, finite_universalFactorizationMap, wittStructureRat_rec, WittVector.mul_polyOfInterest_vars, coeff_sumSMulX, algebraicIndependent_iff, universalFactorizationMapPresentation_map, totalDegree_neg, AlgebraicClosure.instIsAlgClosure, support_neg, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, AlgebraicGeometry.AffineSpace.map_toSpecMvPoly, MonomialOrder.sPolynomial_def, MonomialOrder.sPolynomial_antisymm, Algebra.Generators.H1Cotangent.δAux_ofComp, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, exists_integral_inj_algHom_of_quotient, isNilpotent_iff, exists_finite_inj_algHom_of_fg, degrees_sub_le, MonomialOrder.sPolynomial_left_zero, wittStructureRat_rec_aux, Algebra.Generators.ker_localizationAway, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, instIsAlgebraicMvPolynomialOfNoZeroDivisors, dvd_smul_X_iff_exists, Algebra.Generators.comp_localizationAway_ker, mul_esymm_eq_sum, universalFactorizationMapPresentation_relation, MonomialOrder.sPolynomial_right_zero, WeierstrassCurve.Projective.polynomialX_eq, eval₂_sub, AlgebraicIndependent.eq_zero_of_aeval_eq_zero, WeierstrassCurve.Projective.polynomialY_eq, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, universalFactorizationMapPresentation_algebra_algebraMap, KaehlerDifferential.mvPolynomialBasis_repr_apply, WittVector.frobeniusPolyAux_eq, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, AlgebraicGeometry.AffineSpace.map_SpecMap, Algebra.Generators.cMulXSubOneCotangent_eq, AlgebraicGeometry.AffineSpace.SpecIso_inv_over_assoc, Algebra.Generators.toKaehler_tmul_D, quotient_mk_comp_C_isIntegral_of_isJacobsonRing, AlgebraicIndependent.liftAlgHom_comp_reprField, Algebra.SubmersivePresentation.sum_jacobianRelationsOfHasCoeffs_mul_relationOfHasCoeffs, WeierstrassCurve.Jacobian.polynomialZ_eq, MonomialOrder.sPolynomial_monomial_mul, RingHom.IsStandardSmooth.exists_etale_mvPolynomial, ker_eval₂Hom_universalFactorizationMap, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, WittVector.mul_polyOfInterest_aux1, quotientEquivQuotientMvPolynomial_leftInverse, quotient_mk_comp_C_injective, MonomialOrder.leadingCoeff_neg, AlgebraicClosure.Monics.map_eq_prod, finrank_eq_zero, dvd_monomial_mul_iff_exists, Algebra.Generators.H1Cotangent.δAux_X, MonomialOrder.div_set, dvd_X_iff_exists, eval_sub, totalDegree_sub, StandardEtalePresentation.toPresentation_σ', isIntegral_iff_isIntegral_coeff, WittVector.bind₁_verschiebungPoly_wittPolynomial, Algebra.Presentation.instFinitePresentationModelOfHasCoeffsOfFinite, IsHomogeneous.eq_zero_of_forall_eval_eq_zero_of_le_card, coeff_sub, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, Algebra.SubmersivePresentation.exists_sum_eq_σ_jacobian_mul_σ_jacobian_inv_sub_one, algebraicIndependent_subtype, algebraicIndependent_X, Algebra.Presentation.algebraTensorAlgEquiv_symm_relation, AlgebraicIndependent.aevalEquivField_apply_coe, IsTranscendenceBasis.mvPolynomial, transcendental_polynomial_aeval_X, WittVector.wittMul_zero, C_neg, WittVector.polyOfInterest_vars_eq, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, pderiv_inr_universalFactorizationMap_X, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, WittVector.wittNeg_zero, instIsAlgebraicMvPolynomialOfNoZeroDivisors_1, KaehlerDifferential.mvPolynomialBasis_repr_D, MonomialOrder.sPolynomial_monomial_mul', WeierstrassCurve.Jacobian.polynomialX_eq, transcendental_X, psum_eq_mul_esymm_sub_sum, Algebra.Generators.H1Cotangent.δ_eq_δAux, KaehlerDifferential.mvPolynomialBasis_repr_comp_D, WittVector.bind₁_onePoly_wittPolynomial, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, support_sub, WittVector.wittOne_zero_eq_one, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_fst, AlgebraicGeometry.AffineSpace.over_over, WittVector.bind₁_zero_wittPolynomial, IsTranscendenceBasis.mvPolynomial', AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, StandardEtalePresentation.toPresentation_val, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly, Algebra.Generators.compLocalizationAwayAlgHom_relation_eq_zero, Polynomial.homogenize_sub, IsHomogeneous.eq_zero_of_forall_eval_eq_zero, Algebra.mvPolynomial, Algebra.SubmersivePresentation.ofSubsingleton_σ', degreeOf_sub_lt, universalFactorizationMapPresentation_algebra_smul, LinearMap.polyCharpoly_coeff_eq_zero_iff_of_basis, totalDegree_sub_C_le, eval₂_C_mk_eq_zero, universalFactorizationMap_freeMonic, Algebra.Generators.Hom.toAlgHom_monomial, universalFactorizationMapPresentation_val, MonomialOrder.leadingCoeff_sub_of_lt, universalFactorizationMapPresentation_σ', KaehlerDifferential.mvPolynomialBasis_repr_symm_single, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, Algebra.Presentation.quotientEquiv_mk, MonomialOrder.div, AlgebraicGeometry.AffineSpace.SpecIso_inv_over, WittVector.mul_polyOfInterest_aux5, irreducible_sumSMulXSMulY, MonomialOrder.degree_X_add_C, isJacobsonRing_MvPolynomial_fin, MonomialOrder.degree_sub_leadingTerm_lt_degree, transcendental_supported_polynomial_aeval_X_iff, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, StandardEtalePresentation.toPresentation_relation, Algebra.PreSubmersivePresentation.localizationAway_jacobiMatrix, Algebra.PreSubmersivePresentation.ofHasCoeffs_val, C_sub, quotientEquivQuotientMvPolynomial_rightInverse, WittVector.mul_polyOfInterest_aux3, WittVector.verschiebungPoly_zero, universalFactorizationMapPresentation_jacobiMatrix, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul, C_dvd_iff_zmod, MvRatFunc.rank_eq_max_lift, WittVector.wittOne_pos_eq_zero, IsHomogeneous.neg, algebraicIndependent_comp_subtype, rank_eq, RingHom.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial, finrank_eq_one, trdeg_of_isDomain, transcendental_supported_X, degreeOf_neg, C_p_pow_dvd_bind₁_rename_wittPolynomial_sub_sum, IsSymmetric.sub, Algebra.Generators.comp_σ, Algebra.Presentation.instFinitePresentationQuotientOfFinite, WittVector.wittSub_zero, WittVector.wittZero_eq_zero, exists_integral_inj_algHom_of_fg, Matrix.charpoly.univ_coeff_card, MonomialOrder.degree_sub_of_lt, Algebra.Generators.H1Cotangent.equiv_apply, wittPolynomial_eq_sum_C_mul_X_pow, instFreeMvPolynomialKaehlerDifferential, IsSymmetric.neg, rank_mvPolynomial_mvPolynomial, Algebra.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial, MonomialOrder.degree_sub_leadingTerm_lt_iff, MonomialOrder.degree_sub_leadingTerm_le, rank_eq_lift, Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det, WittVector.wittAdd_zero, Polynomial.homogenize_neg, Algebra.Presentation.mem_ker_naive, instIsPushoutFractionRingMvPolynomial_1, MonomialOrder.sPolynomial_mul_monomial, Algebra.Generators.toExtension_commRing, Algebra.Generators.C_mul_X_sub_one_mem_ker, universalFactorizationMapPresentation_jacobian, MonomialOrder.sPolynomial_leadingTerm_mul, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap, Polynomial.coeff_freeMonic, MonomialOrder.degree_sPolynomial, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap', eq_zero_of_eval_zero_at_prod_finset, transcendental_supported_polynomial_aeval_X, instIsPushoutFractionRingMvPolynomial, pderiv_inl_universalFactorizationMap_X, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val
|