π Source: Mathlib/Algebra/MvPolynomial/Degrees.lean
degreeOf
degrees
degreesLE
totalDegree
coeff_eq_zero_of_totalDegree_lt
degreeOf_C
degreeOf_C_mul_le
degreeOf_X
degreeOf_add_le
degreeOf_def
degreeOf_eq_sup
degreeOf_le_iff
degreeOf_le_totalDegree
degreeOf_lt_iff
degreeOf_monomial_eq
degreeOf_mul_C_le
degreeOf_mul_X_eq_degreeOf_add_one_iff
degreeOf_mul_X_of_ne
degreeOf_mul_X_self
degreeOf_mul_le
degreeOf_one
degreeOf_pow_le
degreeOf_prod_le
degreeOf_rename_of_injective
degreeOf_sum_le
degreeOf_zero
degreesLE_add
degreesLE_nsmul
degreesLE_zero
degrees_C
degrees_X
degrees_X'
degrees_add_le
degrees_add_of_disjoint
degrees_def
degrees_map_le
degrees_map_of_injective
degrees_monomial
degrees_monomial_eq
degrees_mul_le
degrees_one
degrees_pow_le
degrees_prod_le
degrees_rename
degrees_rename_of_injective
degrees_sum_le
degrees_zero
exists_degree_lt
le_degrees_add_left
le_degrees_add_right
le_totalDegree
mem_degrees
mem_degreesLE
monomial_le_degreeOf
totalDegree_C
totalDegree_X
totalDegree_X_pow
totalDegree_add
totalDegree_add_eq_left_of_totalDegree_lt
totalDegree_add_eq_right_of_totalDegree_lt
totalDegree_eq
totalDegree_eq_zero_iff_eq_C
totalDegree_finsetSum_le
totalDegree_finset_prod
totalDegree_finset_sum
totalDegree_le_degrees_card
totalDegree_le_of_support_subset
totalDegree_list_prod
totalDegree_monomial
totalDegree_monomial_le
totalDegree_mul
totalDegree_multiset_prod
totalDegree_one
totalDegree_pow
totalDegree_renameEquiv
totalDegree_rename_le
totalDegree_smul_le
totalDegree_zero
natDegree_finSuccEquiv
chevalley_mvPolynomial_mvPolynomial
degreeOf_coeff_finSuccEquiv
degree_optionEquivLeft
degreeOf_mul_eq
degreeOf_pow_eq
degreeOf_sub_le
natDegree_optionEquivLeft
degreeOf_prod_eq
degree_finSuccEquiv
degreeOf_C_mul
degreeOf_sub_lt
schwartz_zippel_sum_degreeOf
degreeOf_eq_natDegree
degreeOf_neg
degrees_neg
degrees_indicator
degrees_sub_le
vars_def
mem_restrictDegree_iff_sup
degrees_mul_eq
degrees_esymm
LinearMap.toMvPolynomial_totalDegree_le
totalDegree_coeff_finSuccEquiv_add_le
schwartz_zippel_totalDegree
Matrix.toMvPolynomial_totalDegree_le
sum_homogeneousComponent
totalDegree_mul_of_isDomain
isUnit_iff_totalDegree_of_isReduced
IsHomogeneous.totalDegree_le
degree_degLexDegree
combinatorial_nullstellensatz_exists_linearCombination
weightedTotalDegree_one
totalDegree_neg
totalDegree_le_of_dvd_of_isDomain
totalDegree_expand
totalDegree_eq_zero_iff
MonomialOrder.degree_eq_zero_iff_totalDegree_eq_zero
MvPowerSeries.totalDegree_trunc'
totalDegree_sub
IsHomogeneous.totalDegree
totalDegree_sub_C_le
totalDegree_zero_iff_isHomogeneous
totalDegree_coeff_optionEquivLeft_le
degLex_totalDegree_monotone
mem_restrictTotalDegree
Finset.sum
Nat.instAddCommMonoid
Finsupp.support
MulZeroClass.toZero
Nat.instMulZeroClass
DFunLike.coe
Finsupp
Finsupp.instFunLike
coeff
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
mem_support_iff
Finset.sup_lt_iff
lt_of_le_of_lt
totalDegree.eq_1
lt_irrefl
RingHom
MvPolynomial
commSemiring
RingHom.instFunLike
C
Multiset.count.congr_simp
Multiset.count_eq_zero_of_notMem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
zero_add
Multiset.count_le_of_le
X
Multiset.count_singleton
Distrib.toAdd
AddMonoidAlgebra.supDegree_add_le
Multiset.count
degreeOf.eq_1
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
Finset.sup
Lattice.toSemilatticeSup
Nat.instLattice
Nat.instOrderBot
support
degrees.eq_1
Multiset.count_finset_sup
Finsupp.count_toMultiset
Finset.sup_le_iff
eq_or_ne
LE.le.trans
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.mem_support_iff
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
module
LinearMap.instFunLike
monomial
add_zero
MulZeroClass.zero_mul
Finset.comp_sup_eq_sup_comp_of_nonempty
support_nonempty
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
support_mul_X
Finset.sup_le
Finset.sup_map
bot_eq_zero'
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
Finsupp.single_eq_same
Pi.single_eq_of_ne
AddLeftCancelSemigroup.toIsLeftCancelAdd
Multiset.count_add
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
Multiset.count_singleton_self
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.prod_const
Finset.card_range
Finset.sum_const
Finset.prod
CommSemiring.toCommMonoid
Finset.sum_congr
AddMonoidAlgebra.supDegree_prod_le
covariant_swap_add_of_covariant_add
AlgHom
algebra
Algebra.id
AlgHom.funLike
rename
Multiset.count_map_eq_count'
AddMonoidAlgebra.supDegree_sum_le
Multiset
Multiset.instAdd
Submodule
Submodule.mul
IsScalarTower.right
le_antisymm_iff
Submodule.mul_le
sum_mem
Submodule.addSubmonoidClass
Finset.le_sup
AddEquiv.injective
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
Multiset.toFinsupp_toMultiset
Multiset.sub_add_inter
Multiset.instOrderedSub
monomial_mul
mul_one
Submodule.mul_mem_mul
as_sum
add_le_add
Multiset.instAddLeftMono
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
IdemSemiring.toSemiring
Submodule.idemSemiring
zero_nsmul
pow_zero
add_smul
one_smul
pow_succ
Multiset.instZero
Submodule.one
le_antisymm
Multiset.instCanonicallyOrderedAdd
Algebra.smul_def
Multiset.le_zero
Multiset.instSingleton
one_ne_zero
NeZero.one
Finsupp.toMultiset_single
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
le_trans
le_of_eq
SemilatticeSup.toMax
Multiset.instLattice
Disjoint
Multiset.instOrderBot
Multiset.instUnion
LE.le.antisymm
Multiset.union_le
AddMonoidHom
AddZeroClass.toAddZero
Finsupp.instAddZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
Finsupp.toMultiset
map
Finset.sup_mono
support_map_subset
support_map_of_injective
Eq.trans_le
AddMonoidAlgebra.supDegree_single
bot_le
le_rfl
AddMonoidAlgebra.supDegree_mul_le
map_zero
AddMonoidHomClass.toZeroHomClass
Multiset.instHasSubset
Multiset.map
Multiset.mem_map
coeff_rename_ne_zero
Mathlib.Tactic.Contrapose.contraposeβ
Mathlib.Tactic.Push.not_and_eq
Finset.sum_eq_zero
Finsupp.single_apply
Finsupp.sum.eq_1
Finsupp.sum_apply
support_rename_of_injective
Finset.sup_image
Multiset.map_finset_sup
Finset.sup_congr
Finsupp.toMultiset_map
C_0
Fintype.card
Finset
Finset.instMembership
Mathlib.Tactic.Contrapose.contraposeβ
Nat.nsmul_eq_mul
mul_comm
Finset.card_univ
Finset.sum_le_sum
Finsupp.sum_fintype
le_refl
Finsupp.toMultiset_zero
Multiset.zero_le
Finset.le_sup_of_le
coeff_add
Finset.nonempty_iff_ne_empty
Finsupp.support_eq_empty
Mathlib.Tactic.Push.not_forall_eq
Multiset.disjoint_iff_ne
coeff.eq_1
add_comm
Disjoint.symm
Finsupp.sum
Multiset.instMembership
SetLike.instMembership
Submodule.setLike
Finsupp.sum_zero_index
support_X
Finsupp.sum_single_index
sup_bot_eq
X_pow_eq_monomial
AddMonoidAlgebra.sup_support_add_le
max_eq_left_of_lt
Finset.exists_mem_eq_sup
Finsupp.support_nonempty_iff
Mathlib.Tactic.Contrapose.contraposeβ
support_sdiff_support_subset_support_add
Finset.mem_sdiff
Multiset.card
Finsupp.card_toMultiset
Finsupp.instZero
ext
coeff_C
Finset.sum_pos
Nat.instIsOrderedCancelAddMonoid
Finset.apply_prod_le_sum_apply
Eq.le
Finset.cons_induction
zero_le
Finset.sum_cons
Finset.sup_cons
max_le_max
Multiset.card_le_card
Finset.instHasSubset
List.apply_prod_le_sum_map
support_monomial
Finset.sup_singleton
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddMonoidAlgebra.sup_support_mul_le
Finsupp.sum_add_index'
Multiset.prod
Multiset.sum
Multiset.apply_prod_le_sum_map
Finset.pow_eq_prod_const
Finset.nsmul_eq_sum_const
AlgEquiv
AlgEquiv.instFunLike
renameEquiv
rename_rename
Equiv.symm_comp_self
rename_id
Finsupp.mapDomain_support
rename_eq
Finset.mem_image
Finsupp.sum_mapDomain_index
SMulZeroClass.toSMul
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
DistribMulAction.toDistribSMul
support_smul
---
β Back to Index