| Metric | Count |
Definitionsaeval, aevalTower, algebraMvPolynomial, eval, evalā, evalāHom, map, mapAlgHom | 8 |
Theoremsadjoin_eq_range, adjoin_range_eq_range_aeval, C_dvd_iff_map_hom_eq_zero, aevalTower_C, aevalTower_X, aevalTower_algebraMap, aevalTower_comp_C, aevalTower_comp_algebraMap, aevalTower_comp_toAlgHom, aevalTower_id, aevalTower_ofId, aevalTower_ofNat, aevalTower_toAlgHom, aeval_C, aeval_X, aeval_X_left, aeval_X_left_apply, aeval_def, aeval_eq_eval, aeval_eq_evalāHom, aeval_eq_zero, aeval_monomial, aeval_ofNat, aeval_prod, aeval_sum, aeval_sumElim, aeval_unique, aeval_zero, aeval_zero', algebraMap_def, coe_aeval_eq_eval, coe_coeffs_map, coe_evalāHom, coeff_map, coeffs_map, comp_aeval, comp_aeval_apply, comp_evalāHom, constantCoeff_comp_map, constantCoeff_map, eval_C, eval_X, eval_add, eval_assoc, eval_eq, eval_eq', eval_evalā, eval_map, eval_mem, eval_monomial, eval_mul, eval_ofNat, eval_pow, eval_prod, eval_sum, eval_zero, eval_zero', evalāHom_C, evalāHom_X', evalāHom_congr, evalāHom_eq_zero, evalāHom_map_hom, evalāHom_monomial, evalāHom_zero, evalāHom_zero', evalāHom_zero'_apply, evalāHom_zero_apply, evalā_C, evalā_X, evalā_add, evalā_assoc, evalā_comp, evalā_comp_left, evalā_comp_right, evalā_congr, evalā_dvd, evalā_eq, evalā_eq', evalā_eq_eval_map, evalā_eta, evalā_id, evalā_map, evalā_map_comp_C, evalā_mem, evalā_monomial, evalā_mul, evalā_mul_C, evalā_mul_monomial, evalā_natCast, evalā_ofNat, evalā_one, evalā_pow, evalā_prod, evalā_sum, evalā_zero, evalā_zero'_apply, evalā_zero_apply, instFaithfulSMul, instIsScalarTower, mapAlgHom_apply, mapAlgHom_coe_ringHom, mapAlgHom_id, map_C, map_X, map_aeval, map_eval, map_evalā, map_evalāHom, map_id, map_injective, map_injective_iff, map_leftInverse, map_map, map_mapRange_eq_iff, map_monomial, map_ofNat, map_rightInverse, map_surjective, map_surjective_iff, mem_range_map_iff_coeffs_subset, range_mapAlgHom, smul_eval, support_map_of_injective, support_map_subset | 124 |
| Total | 132 |
| Name | Category | Theorems |
aeval š | CompOp | 140 mathmath: aeval_sum, Algebra.Generators.aeval_val_surjective, aeval_X_left, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, WittVector.aeval_verschiebung_poly', aeval_algebraMap_eq_zero_iff, algebraicIndependent_iff_ker_eq_bot, WittVector.ghostComponent_apply, aeval_wittPolynomial, aeval_X_left_apply, Ideal.span_pow_eq_map_homogeneousSubmodule, StandardEtalePresentation.toPresentation_algebra_smul, Ideal.span_eq_map_homogeneousSubmodule, aevalTower_ofId, IntermediateField.mem_adjoin_iff, aeval_X, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, optionEquivLeft_apply, Algebra.SubmersivePresentation.ofSubsingleton_algebra_algebraMap, aeval_eq_eval, aeval_ite_mem_eq_self, Algebra.Generators.cotangentSpaceBasis_repr_one_tmul, AlgebraicIndependent.aeval_comp_repr, map_aeval, Algebra.Generators.algebraMap_apply, expand_zero, Polynomial.aeval_homogenize_X_one, MonoidAlgebra.mvPolynomial_aeval_of_surjective_of_closure, AddMonoidAlgebra.mvPolynomial_aeval_of_surjective_of_closure, aeval_algebraMap_eq_zero_iff_of_injective, Algebra.Generators.algebraMap_eq, Algebra.SubmersivePresentation.ofSubsingleton_relation, Algebra.Generators.Hom.aeval_val, Algebra.Presentation.comp_aeval_relation_inl, WittVector.mulN_coeff, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, Algebra.Generators.Hom.algebraMap_toAlgHom', Algebra.Generators.cotangentSpaceBasis_repr_tmul, aeval_expand, AlgebraicIndependent.lift_reprField, aeval_algebraMap_apply, Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation, Subalgebra.mvPolynomial_aeval_coe, IsLocalization.Away.mvPolynomialQuotientEquiv_apply, AlgebraicIndependent.aeval_of_algebraicIndependent, aeval_bindā, aeval_eq_zero, AnalyticOnNhd.aeval_mvPolynomial, MvPowerSeries.aeval_coe, WittVector.IsPoly.poly, Algebra.Presentation.aeval_val_relation, aeval_def, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, aeval_toMvPolynomial, universalFactorizationMapPresentation_relation, Algebra.PreSubmersivePresentation.aevalDifferential_single, AlgebraicIndependent.algebraMap_aevalEquiv, aeval_id_rename, Algebra.adjoin_range_eq_range_aeval, Algebra.Generators.aeval_val_Ļ, mem_zeroLocus_iff, aeval_eq_constantCoeff_of_vars, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, MvPowerSeries.substAlgHom_coe, universalFactorizationMapPresentation_algebra_algebraMap, aeval_zero, comp_aeval, IntermediateField.mem_adjoin_range_iff, WittVector.coeff_frobeniusFun, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, Algebra.Generators.self_algebra_smul, algebraicIndependent_iff_injective_aeval, aeval_map_algebraMap, AlgebraicIndependent.liftAlgHom_comp_reprField, LinearMap.polyCharpolyAux_map_aeval, AlgebraicIndependent.aeval_repr, IsHomogeneous.aeval, aeval_bindā, Algebra.adjoin_eq_range, Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs, aeval_eq_bindā, aeval_ofNat, Algebra.Presentation.aeval_val_relationOfHasCoeffs, Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs, aeval_injective_iff_of_isEmpty, aeval_comp_bindā, Algebra.Generators.repr_CotangentSpaceMap, aeval_esymm_eq_multiset_esymm, StandardEtalePresentation.toPresentation_Ļ', witt_structure_prop, optionEquivRight_apply, comp_aeval_apply, WittVector.coeff_select, aeval_unique, Algebra.Generators.ofComp_toAlgHom_monomial_sumElim, Algebra.Generators.aeval_val_eq_zero, esymmAlgHom_apply, aeval_eq_evalāHom, AlgebraicIndependent.aevalEquivField_apply_coe, aeval_C, aeval_comp_expand, AlgebraicIndependent.aevalEquiv_apply_coe, StandardEtalePresentation.aeval_val_equivMvPolynomial, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, Algebra.Generators.ker_eq_ker_aeval_val, aeval_C_comp_left, Algebra.Generators.cotangentRestrict_mk, Algebra.SubmersivePresentation.ofSubsingleton_algebra_smul, Algebra.Generators.aeval_val_Ļ', Algebra.Generators.Hom.comp_val, comap_apply, aeval_id_eq_joinā, aeval_one_tmul, universalFactorizationMapPresentation_algebra_smul, aeval_sumElim_pderiv_inl, AnalyticAt.aeval_mvPolynomial, aeval_sumElim, aeval_comp_rename, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, mem_vanishingIdeal_iff, mem_vanishingIdeal_singleton_iff, aeval_zero', aeval_rename, WittVector.aeval_verschiebungPoly, aeval_monomial, Algebra.Generators.self_algebra_algebraMap, aeval_prod, exists_restrict_to_vars, aeval_comp_toMvPolynomial, aevalTower_id, aeval_natDegree_le, Algebra.Generators.Hom.algebraMap_toAlgHom, WittVector.coeff_frobenius, MvPowerSeries.subst_coe, coe_aeval_eq_eval, Matrix.mvPolynomialX_mapMatrix_aeval, Polynomial.aeval_homogenize_of_eq_one, Algebra.SubmersivePresentation.basisDeriv_apply, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val
|
aevalTower š | CompOp | 11 mathmath: aevalTower_ofId, aevalTower_comp_C, aevalTower_toAlgHom, optionEquivRight_symm_apply, aevalTower_X, aevalTower_C, aevalTower_comp_algebraMap, aevalTower_comp_toAlgHom, aevalTower_algebraMap, aevalTower_id, aevalTower_ofNat
|
algebraMvPolynomial š | CompOp | 15 mathmath: instIsScalarTower, instIsIntegralMvPolynomial, instIsAlgebraicMvPolynomialOfNoZeroDivisors, isIntegral_iff_isIntegral_coeff, instIsPushout_1, instIsAlgebraicMvPolynomialOfNoZeroDivisors_1, isLocalization_C_mk', instIsPushout, isLocalization, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, rank_mvPolynomial_mvPolynomial, algebraMap_def, instIsPushoutFractionRingMvPolynomial_1, instIsPushoutFractionRingMvPolynomial, instFaithfulSMul
|
eval š | CompOp | 95 mathmath: funext_iff, eval_indicator_apply_eq_one, Ideal.mem_span_iff_exists_isHomogeneous, eval_zero', WeierstrassCurve.Projective.eval_polynomial, isEmptyRingEquiv_apply, WeierstrassCurve.Projective.polynomial_relation, AnalyticOnNhd.eval_linearMap', WeierstrassCurve.Jacobian.eval_polynomialY, eval_map, char_dvd_card_solutions_of_add_lt, aeval_eq_eval, schwartz_zippel_totalDegree, eval_mem, eval_rename_prod_mk, eval_evalā, evalā_id, FirstOrder.Ring.lift_genericPolyMap, WeierstrassCurve.Jacobian.eval_polynomialX_of_Z_ne_zero, eval_comp_toMvPolynomial, WeierstrassCurve.Jacobian.eval_polynomialX, WeierstrassCurve.Projective.eval_polynomialX, WeierstrassCurve.Jacobian.eval_polynomialY_of_Z_ne_zero, eval_ofNat, eval_eq_eval_mv_eval', WeierstrassCurve.Jacobian.polynomial_relation, LinearMap.polyCharpolyAux_map_eval, eval_prod, AnalyticOnNhd.eval_linearMap, eval_eq', eval_neg, Polynomial.eval_homogenize, WeierstrassCurve.Projective.eval_polynomialX_of_Z_ne_zero, LinearMap.polyCharpolyAux_map_eq_charpoly, LinearMap.polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff, eval_eq, eval_add, eval_monomial, WeierstrassCurve.Projective.eval_polynomialZ, eval_pow, eval_zero, schwartz_zippel_sup_sum, eval_mul, eval_indicator_apply_eq_zero, WeierstrassCurve.Projective.negDblY_eq, smul_eval, WeierstrassCurve.Projective.eval_polynomialY_of_Z_ne_zero, isEmptyAlgEquiv_apply, Matrix.toMvPolynomial_eval_eq_apply, funext_set_iff, char_dvd_card_solutions, char_dvd_card_solutions_of_sum_lt, Matrix.mvPolynomialX_mapMatrix_eval, WeierstrassCurve.Projective.negDblY_eq', LinearMap.polyCharpolyAux_coeff_eval, eval_sub, eval_rename, LinearMap.polyCharpoly_map_eq_charpoly, WeierstrassCurve.Projective.eval_polynomial_of_Z_ne_zero, eval_toMvPolynomial, WeierstrassCurve.Jacobian.eval_polynomial, FirstOrder.realize_genericPolyMapSurjOnOfInjOn, evalā_comp, WeierstrassCurve.Jacobian.eval_polynomial_of_Z_ne_zero, sum_eval_eq_zero, eval_C, eval_sum, LinearMap.toMvPolynomial_eval_eq_apply, schwartz_zippel_sum_degreeOf, WeierstrassCurve.Projective.dblX_eq, coeff_eval_eq_eval_coeff, optionEquivLeft_elim_eval, WeierstrassCurve.Projective.dblX_eq', eval_expand, eval_X, Ideal.mem_span_pow_iff_exists_isHomogeneous, WeierstrassCurve.Projective.dblY_of_Y_eq', AnalyticOnNhd.eval_continuousLinearMap', AnalyticOnNhd.eval_mvPolynomial, coe_aeval_eq_eval, WeierstrassCurve.Projective.eval_polynomialY, evalā_eq_eval_map, eval_assoc, ax_grothendieck_zeroLocus, AnalyticOnNhd.eval_continuousLinearMap, WeierstrassCurve.Jacobian.eval_polynomialZ, map_eval, char_dvd_card_solutions_of_fintype_sum_lt, LinearMap.polyCharpoly_coeff_eval, continuous_eval, evalā_apply, expand_zero_apply, WeierstrassCurve.Projective.negDblY_of_Y_eq', eval_polynomial_eval_finSuccEquiv, LinearMap.polyCharpolyAux_map_eq_toMatrix_charpoly
|
evalā š | CompOp | 62 mathmath: pUnitAlgEquiv_apply, evalāHom_X, MvPowerSeries.evalā_coe, evalā_expand, Polynomial.evalā_homogenize_of_eq_one, evalā_zero'_apply, MvPowerSeries.evalāHom_eq_extend, evalā_pow, evalā_prod, map_evalā, eval_map, evalā_zero, evalā_ofNat, map_mvPolynomial_eq_evalā, eval_evalā, evalā_id, evalā_mul_monomial, evalā_const_pUnitAlgEquiv_symm, evalā_sum, evalā_congr, evalā_map, evalā_neg, evalā_X, evalā_one, evalā_C, rename_evalā, evalā_cast_comp, evalā_dvd, evalā_eq', aeval_def, coe_evalāHom, evalā_add, evalā_zero_apply, evalā_sub, evalā_mul, evalā_eta, evalā_rename, quotientEquivQuotientMvPolynomial_leftInverse, evalā_const_pUnitAlgEquiv, evalā_map_comp_C, rename_prod_mk_evalā, evalā_mul_C, evalā_comp, evalā_pUnitAlgEquiv_symm, polynomial_eval_evalā, mapAlgHom_apply, Matrix.mvPolynomialX_map_evalā, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, evalā_eq, evalā_monomial, evalā_natCast, coe_expand, evalā_rename_prod_mk, evalā_mem, evalā_comp_left, quotientEquivQuotientMvPolynomial_rightInverse, IsHomogeneous.evalā, evalā_pUnitAlgEquiv, evalā_assoc, evalā_eq_eval_map, eval_assoc, evalā_comp_right
|
evalāHom š | CompOp | 44 mathmath: toMvPowerSeries_uniformContinuous, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, evalāHom_monomial, map_evalāHom, comp_evalāHom, evalāHom_C_id_eq_joinā, evalāHom_C_eq_bindā, evalāHom_comp_bindā, map_aeval, evalāHom_congr, evalāHom_zero_apply, evalāHom_congr', Matrix.charpoly.univ_coeff_evalāHom, evalāHom_X', evalāHom_rename, evalāHom_zero', CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, coe_evalāHom, evalāHom_zero'_apply, evalāHom_zero, evalāHom_map_hom, finSuccEquiv_eq, ker_evalāHom_universalFactorizationMap, quotientEquivQuotientMvPolynomial_leftInverse, aeval_bindā, evalāHom_eq_zero, evalāHom_eq_bindā, finSuccEquiv_apply, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, aeval_eq_evalāHom, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, evalāHom_id_X_eq_joinā, evalāHom_eq_constantCoeff_of_vars, Matrix.charpoly.univ_map_evalāHom, evalā_C_mk_eq_zero, evalāHom_bindā, evalāHom_bindā, evalāHom_C_left, quotientEquivQuotientMvPolynomial_rightInverse, evalāHom_C, hom_bindā, evalāHom_comp_expand, evalāHom_comp_C
|
map š | CompOp | 107 mathmath: AlgebraicGeometry.AffineSpace.map_Spec_map, map_bindā, map_mapRange_eq_iff, map_comp_C, Polynomial.homogenize_map, Matrix.charpoly.univ_map_map, universalFactorizationMap_comp_map, IsSymmetric.map, ker_map, map_leftInverse, WeierstrassCurve.Jacobian.baseChange_polynomialZ, mem_range_map_iff_coeffs_subset, exists_dvd_map_of_isAlgebraic, map_comp_rename, map_bindā, map_evalā, eval_map, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, joinā_comp_map, map_map, IsHomogeneous.map, map_expand, map_frobenius_expand, expand_char, map_rename, Algebra.Presentation.map_relationOfHasCoeffs, evalā_map, map_esymm, WeierstrassCurve.Projective.baseChange_polynomial, Matrix.toMvPolynomial_map, bindā_map, degrees_map_of_injective, LinearMap.polyCharpoly_baseChange, commAlgEquiv_C, mapEquiv_apply, Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs, mapAlgEquiv_apply, WittVector.frobeniusPoly_zmod, WeierstrassCurve.Jacobian.baseChange_polynomialY, map_ofNat, WeierstrassCurve.Projective.baseChange_polynomialY, LinearMap.toMvPolynomial_baseChange, coe_coeffs_map, map_expand_pow_char, mapRange_eq_map, map_hsymm, degrees_map_le, WeierstrassCurve.Projective.map_polynomialX, Algebra.SubmersivePresentation.map_jacobianRelationsOfHasCoeffs, MvPowerSeries.trunc_map, WeierstrassCurve.Jacobian.baseChange_polynomial, universalFactorizationMapPresentation_relation, map_surjective_iff, map_injective_iff, map_injective, support_map_of_injective, AlgebraicGeometry.AffineSpace.map_SpecMap, WeierstrassCurve.Projective.baseChange_polynomialX, map_C, LinearMap.polyCharpolyAux_baseChange, map_monomial, vars_map_of_injective, aeval_map_algebraMap, evalāHom_map_hom, ker_evalāHom_universalFactorizationMap, coeff_map, map_rightInverse, killCompl_map, WeierstrassCurve.Jacobian.map_polynomialZ, WeierstrassCurve.Projective.map_polynomialZ, witt_structure_prop, map_surjective, evalā_map_comp_C, WeierstrassCurve.Jacobian.baseChange_polynomialX, algebraTensorAlgEquiv_symm_map, map_iterateFrobenius_expand, support_map_subset, pderiv_map, coeffs_map, WeierstrassCurve.Jacobian.map_polynomial, WittVector.map_frobeniusPoly, map_wittPolynomial, algebraTensorAlgEquiv_tmul, vars_map, Algebra.Presentation.HasCoeffs.relation_mem_range_map, universalFactorizationMapPresentation_Ļ', mapAlgHom_coe_ringHom, WeierstrassCurve.Projective.baseChange_polynomialZ, Algebra.Presentation.baseChange_relation, joinā_map, C_dvd_iff_zmod, map_wittStructureInt, constantCoeff_comp_map, MvPowerSeries.trunc'_map, WeierstrassCurve.Jacobian.map_polynomialY, Polynomial.map_map_freeMonic, constantCoeff_map, WeierstrassCurve.Projective.map_polynomialY, WeierstrassCurve.Projective.map_polynomial, evalā_eq_eval_map, map_X, WeierstrassCurve.Jacobian.map_polynomialX, C_dvd_iff_map_hom_eq_zero, algebraMap_def, evalā_comp_right, map_eval, map_id
|
mapAlgHom š | CompOp | 9 mathmath: universalFactorizationMap_comp_map, mapAlgHom_id, algebraTensorAlgEquiv_symm_comp_aeval, sumAlgEquiv_comp_rename_inl, ker_mapAlgHom, mapAlgHom_apply, mapAlgHom_coe_ringHom, range_mapAlgHom, universalFactorizationMapPresentation_jacobiMatrix
|