Documentation Verification Report

NoZeroDivisors

πŸ“ Source: Mathlib/Algebra/MvPolynomial/NoZeroDivisors.lean

Statistics

MetricCount
Definitions0
TheoremsdegreeOf_C_mul, degreeOf_mul_eq, degreeOf_pow_eq, degreeOf_prod_eq, degrees_mul_eq, dvd_C_iff_exists, dvd_X_iff_exists, dvd_monomial_iff_exists, dvd_monomial_one_iff_exists, dvd_smul_X_iff_exists, totalDegree_le_of_dvd_of_isDomain, totalDegree_mul_of_isDomain
12
Total12

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
degreeOf_C_mul πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
degreeOf
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
commSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
C
β€”MulZeroClass.mul_zero
degreeOf_zero
degreeOf_eq_natDegree
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.natDegree_mul'
rename_injective
Equiv.injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
EquivLike.toEmbeddingLike
algHom_C
optionEquivLeft_C
Polynomial.leadingCoeff_C
Mathlib.Tactic.Contrapose.contraposeβ‚„
ext
coeff_C_mul
Polynomial.natDegree_C
natDegree_optionEquivLeft
zero_add
degreeOf_mul_eq πŸ“–mathematicalβ€”degreeOf
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
β€”degreeOf_eq_natDegree
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.natDegree_mul
instNoZeroDivisors
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
degreeOf_pow_eq πŸ“–mathematicalβ€”degreeOf
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
β€”Finset.pow_eq_prod_const
degreeOf_prod_eq
Finset.sum_const
Finset.card_range
degreeOf_prod_eq πŸ“–mathematicalβ€”degreeOf
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
commSemiring
Finset.sum
Nat.instAddCommMonoid
β€”subsingleton_or_nontrivial
Finset.prod_congr
Subsingleton.eq_zero
degreeOf_zero
Finset.sum_congr
Finset.sum_const_zero
Finset.induction_on
degreeOf_one
Finset.prod_insert
degreeOf_mul_eq
Finset.prod_ne_zero_iff
instNoZeroDivisors
Finset.sum_insert
degrees_mul_eq πŸ“–mathematicalβ€”degrees
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
Multiset
Multiset.instAdd
β€”Multiset.ext'
Multiset.count_add
degreeOf_mul_eq
dvd_C_iff_exists πŸ“–mathematicalβ€”MvPolynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
C
β€”Nat.instCanonicallyOrderedAdd
totalDegree_C
totalDegree_le_of_dvd_of_isDomain
coeff_zero_C
C_dvd_iff_dvd_coeff
totalDegree_eq_zero_iff_eq_C
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
dvd_X_iff_exists πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
X
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
commSemiring
RingHom.instFunLike
C
Algebra.toSMul
algebra
Algebra.id
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
Zero.instNonempty
one_smul
dvd_smul_X_iff_exists
one_ne_zero'
NeZero.one
isUnit_iff_dvd_one
dvd_monomial_iff_exists πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
commSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instLE
β€”mul_comm
C_mul_monomial
mul_one
dvd_monomial_mul_iff_exists
NoZeroDivisors.to_isCancelMulZero
dvd_C_iff_exists
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
dvd_monomial_one_iff_exists πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
commSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instLE
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”subsingleton_or_nontrivial
le_refl
Unique.instSubsingleton
dvd_monomial_iff_exists
one_ne_zero'
NeZero.one
dvd_smul_X_iff_exists πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
Algebra.toSMul
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”X.eq_1
smul_monomial
smul_eq_mul
mul_one
dvd_monomial_iff_exists
Finsupp.ext
le_refl
LE.le.trans
Eq.le
Finsupp.single_eq_of_ne
le_antisymm
Finsupp.single_eq_same
Nat.instCanonicallyOrderedAdd
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_rfl
totalDegree_le_of_dvd_of_isDomain πŸ“–mathematicalMvPolynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
totalDegreeβ€”totalDegree_mul_of_isDomain
instNoZeroDivisors
totalDegree_mul_of_isDomain πŸ“–mathematicalβ€”totalDegree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
β€”exists_wellOrder
IsWellOrder.toIsWellFounded
isWellOrder_gt
instWellFoundedGTOrderDualOfWellFoundedLT
degree_degLexDegree
MonomialOrder.degree_mul
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass

---

← Back to Index