📁 Source: Mathlib/Algebra/MvPolynomial/SchwartzZippel.lean
schwartz_zippel_sum_degreeOf
schwartz_zippel_sup_sum
schwartz_zippel_totalDegree
NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
NNRat.instDiv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Finset.card
Finset.filter
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Fintype.piFinset
Fin.fintype
Finset.prod
CommSemiring.toCommMonoid
instCommSemiringNNRat
Finset.univ
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
degreeOf
Finset.sup_le
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.mono_cast
IsStrictOrderedRing.toZeroLEOneClass
monomial_le_degreeOf
Nat.cast_nonneg'
Finset.sup
Finsupp
Nat.instMulZeroClass
Lattice.toSemilatticeSup
NNRat.instOrderBot
support
Finsupp.instFunLike
eq_C_of_isEmpty
Fin.isEmpty'
Finset.filter.congr_simp
eval_C
C_ne_zero
Fintype.piFinset_of_isEmpty
Finset.univ_unique
Finset.filter_false
CharP.cast_eq_zero
CharP.ofCharZero
NNRat.instCharZero
Finset.prod_congr
Finset.univ_eq_empty
div_one
Finset.sum_congr
NNRat.instCanonicallyOrderedAdd
EmbeddingLike.map_ne_zero_iff
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
add_div
Nat.cast_add
Finset.card_union_add_card_inter
Finset.filter_union_right
Finset.filter_and
add_zero
add_le_add
covariant_swap_add_of_covariant_add
Finset.card_le_card
Finset.monotone_filter_right
zero_le
Finset.card_consEquiv_filter_piFinset
Fin.prod_univ_succ
Fin.tail_def
Nat.cast_zero
mul_div_mul_left_le
Finset.filter_filter
Finset.filter_piFinset_eq_map_consEquiv
Finset.filter_map
Finset.card_map
Finset.product_eq_biUnion_right
Finset.filter_biUnion
Finset.filter_image
Finset.card_biUnion_le
Nat.instIsOrderedAddMonoid
Finset.card_image_le
Polynomial.natDegree_map_of_leadingCoeff_ne_zero
Finset.mem_filter
Polynomial.leadingCoeff.eq_1
Polynomial.natDegree_zero
Polynomial.coeff_map
Polynomial.coeff_zero
eval_eq_eval_mv_eval'
Multiset.toFinset_card_le
Polynomial.card_roots'
Nat.instCanonicallyOrderedAdd
mem_support_coeff_finSuccEquiv
mem_support_iff
leadingCoeff_toLex
Zero.instNonempty
AddMonoidAlgebra.leadingCoeff_ne_zero
Equiv.injective
Finset.sum_le_sum_of_subset_of_nonneg
Finset.filter_subset
Finset.sum_const
Fintype.card_piFinset
mul_comm
mul_div_mul_right_le
Finset.sup_add
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
NNRat.instOrderedSub
support_nonempty
Finset.le_sup_of_le
Fin.sum_univ_succ
add_comm
add_le_add_left
natDegree_finSuccEquiv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
totalDegree
Finset.prod_const
Fintype.card_fin
Finset.eq_empty_or_nonempty
div_zero
Finset.sum_const_zero
Finset.sup_bot
Nat.cast_finsetSup
Finset.sup_div₀
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
Finset.Nonempty.card_pos
Finsupp.sum_fintype
Nat.cast_sum
---
← Back to Index