Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/NoZeroSMulDivisors/Defs.lean

Statistics

MetricCount
DefinitionsNoZeroSMulDivisors
1
TheoremsnoZeroSMulDivisors, to_noZeroSMulDivisors_int, to_noZeroSMulDivisors_nat, toNoZeroSMulDivisors, eq_zero_or_eq_zero_of_smul_eq_zero, instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors, noZeroSMulDivisors_iff, noZeroSMulDivisors_iff_right_eq_zero_of_smul
8
Total9

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
noZeroSMulDivisors πŸ“–mathematicalβ€”NoZeroSMulDivisorsβ€”NoZeroSMulDivisors.eq_zero_or_eq_zero_of_smul_eq_zero

IsAddTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
to_noZeroSMulDivisors_int πŸ“–mathematicalβ€”NoZeroSMulDivisors
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”Mathlib.Tactic.Contrapose.contrapose₁
smul_zero
zsmul_right_injective
to_noZeroSMulDivisors_nat πŸ“–mathematicalβ€”NoZeroSMulDivisors
MulZeroClass.toZero
Nat.instMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”Mathlib.Tactic.Contrapose.contrapose₁
nsmul_zero
nsmul_right_injective

NoZeroDivisors

Theorems

NameKindAssumesProvesValidatesDepends On
toNoZeroSMulDivisors πŸ“–mathematicalβ€”NoZeroSMulDivisorsβ€”eq_zero_or_eq_zero_of_mul_eq_zero

NoZeroSMulDivisors

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_or_eq_zero_of_smul_eq_zero πŸ“–β€”β€”β€”β€”β€”

(root)

Definitions

NameCategoryTheorems
NoZeroSMulDivisors πŸ“–CompData
8 mathmath: noZeroSMulDivisors_iff_right_eq_zero_of_smul, NoZeroDivisors.toNoZeroSMulDivisors, Function.noZeroSMulDivisors, IsAddTorsionFree.to_noZeroSMulDivisors_nat, noZeroSMulDivisors_iff, IsAddTorsionFree.to_noZeroSMulDivisors_int, Function.Injective.noZeroSMulDivisors, GroupWithZero.toNoZeroSMulDivisors

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors πŸ“–mathematicalβ€”Module.IsTorsionFree
AddCommGroup.toAddCommMonoid
β€”IsRegular.ne_zero
IsDomain.toNontrivial
NoZeroSMulDivisors.eq_zero_or_eq_zero_of_smul_eq_zero
smul_sub
sub_eq_zero
noZeroSMulDivisors_iff πŸ“–mathematicalβ€”NoZeroSMulDivisorsβ€”β€”
noZeroSMulDivisors_iff_right_eq_zero_of_smul πŸ“–mathematicalβ€”NoZeroSMulDivisorsβ€”β€”

---

← Back to Index