Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Order/AbsoluteValue/Basic.lean

Statistics

MetricCount
DefinitionsIsNontrivial, apply, abs, funLike, instInhabited, toMonoidHom, toMonoidWithZeroHom, toMulHom, trivial, IsAbsoluteValue, evalAbv, abvHom, abvHom', toAbsoluteValue
14
Theoremsexists_abv_gt_one, exists_abv_lt_one, abs_abv_sub_le_abv_sub, abs_apply, add_le, add_le', apply_natAbs_eq, apply_nat_le_self, coe_mk, coe_toMonoidHom, coe_toMonoidWithZeroHom, coe_toMulHom, eq_on_nat_iff_eq_on_int, eq_zero, eq_zero', ext, ext_iff, instMulRingNormClassOfNontrivialOfIsDomain, isAbsoluteValue, isNontrivial_iff_ne_trivial, le_add, le_sub, listSum_le, map_mul, map_neg, map_one, map_one_of_isLeftRegular, map_pow, map_sub, map_sub_eq_zero_iff, map_zero, monoidWithZeroHomClass, mulHomClass, ne_zero, ne_zero_iff, nonneg, nonneg', nonnegHomClass, nonpos_iff, not_isNontrivial_apply, not_isNontrivial_iff, pos, pos_iff, sub_le, sub_le_add, subadditiveHomClass, trivial_apply, zeroHomClass, abs_abv_sub_le_abv_sub, abs_isAbsoluteValue, abv_add, abv_add', abv_div, abv_eq_zero, abv_eq_zero', abv_inv, abv_mul, abv_mul', abv_neg, abv_nonneg, abv_nonneg', abv_one, abv_one', abv_pos, abv_pow, abv_sub, abv_sub_le, abv_zero, sub_abv_le_abv_sub, toAbsoluteValue_apply
70
Total84

AbsoluteValue

Definitions

NameCategoryTheorems
IsNontrivial πŸ“–MathDef
4 mathmath: NumberField.InfinitePlace.isNontrivial, IsEquiv.isNontrivial_congr, not_isNontrivial_iff, isNontrivial_iff_ne_trivial
abs πŸ“–CompOp
3 mathmath: abs_isEuclidean, abs_apply, Rat.uniformSpace_eq
funLike πŸ“–CompOp
129 mathmath: map_neg, Polynomial.cardPowDegree_zero, Height.mulHeight₁_eq, Polynomial.exists_partition_polynomial, Padic.complete', map_units_intCast, coe_mk, IsEuclidean.sub_mod_lt, IsDedekindDomain.HeightOneSpectrum.intAdicAbv_le_one, eq_zero, abs_abv_sub_le_abv_sub, padicNormE.nonarchimedean', Polynomial.exists_partition_polynomial_aux, padicNormE.image', eq_on_nat_iff_eq_on_int, NumberField.InfinitePlace.coe_apply, padicNormE.eq_padic_norm', isEquiv_iff_lt_one_iff, map_sub_eq_zero_iff, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_intCast_le_one, IsDedekindDomain.HeightOneSpectrum.isNonarchimedean_adicAbv, apply_nat_le_self, Height.AdmissibleAbsValues.isNonarchimedean, IsEquiv.le_one_iff, Rat.AbsoluteValue.exists_nat_rpow_iff_isEquiv, Rat.AbsoluteValue.equiv_on_nat_iff_equiv, padicNormE.defn, padicNormE.add_eq_max_of_ne', coe_toMonoidHom, Polynomial.contentIdeal_eq_top_iff_forall_gaussNorm_eq_one, abs_apply, Polynomial.gaussNorm_intAdicAbv_le_one, Polynomial.gaussNorm_lt_one_iff_contentIdeal_le, le_sub, IsEquiv.lt_iff_lt, IsDedekindDomain.HeightOneSpectrum.isNonarchimedean_intAdicAbv, NumberField.InfinitePlace.smul_coe_apply, NumberField.place_apply, IsAbsoluteValue.toAbsoluteValue_apply, Padic.padicNormE.is_norm, IsDedekindDomain.HeightOneSpectrum.intAdicAbv_lt_one_iff, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_natCast_le_one, Rat.AbsoluteValue.padic_eq_padicNorm, exists_one_lt_lt_one_pi_of_not_isEquiv, pos, IsEquiv.lt_one_iff, nonneg, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def, pos_iff, IsEquiv.le_iff_le, IsEquiv.log_div_log_pos, Height.mulHeight_eq, NumberField.FinitePlace.coe_apply, map_units_int_smul, Height.AdmissibleAbsValues.mulSupport_finite, ext_iff, Polynomial.cardPowDegree_apply, Padic.complete'', MulRingNorm.mulRingNormEquivAbsoluteValue_symm_apply, Polynomial.exists_approx_polynomial, IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_le_one, WithAbs.norm_eq_abv, nonnegHomClass, trivial_apply, IsAdmissible.exists_approx, IsEuclidean.map_lt_map_iff', IsEquiv.eq_iff_eq, nonpos_iff, monoidWithZeroHomClass, le_add, Padic.exi_rat_seq_conv, coe_toMulHom, IsAdmissible.exists_partition, not_isNontrivial_iff, MulRingNorm.mulRingNormEquivAbsoluteValue_apply, hasBasis_uniformity, IsDedekindDomain.HeightOneSpectrum.intAdicAbv_eq_one_iff, exists_one_lt_lt_one_of_not_isEquiv, IsAdmissible.exists_partition', Rat.AbsoluteValue.padic_le_one, sum_le, zeroHomClass, NumberField.RingOfIntegers.HeightOneSpectrum.isNonarchimedean_adicAbv, IsDedekindDomain.HeightOneSpectrum.adicAbv_of_algebraMap, map_units_int, IsEquiv.one_lt_iff, IsEquiv.eq_one_iff, mulHomClass, map_pow, map_sub, map_prod, Padic.rat_dense', not_isNontrivial_apply, Polynomial.cardPowDegree_nonzero, sub_le, Rat.AbsoluteValue.eq_on_nat_iff_eq, IsAdmissible.exists_approx_aux, Rat.AbsoluteValue.real_eq_abs, NumberField.toNNReal_valued_eq_adicAbv, add_le, instMulRingNormClassOfNontrivialOfIsDomain, subadditiveHomClass, IsEquiv.one_le_iff, IsEuclidean.map_lt_map_iff, IsNontrivial.exists_abv_lt_one, apply_natAbs_eq, isEquiv_iff_exists_rpow_eq, isAbsoluteValue, listSum_le, map_zero, map_mul, Height.AdmissibleAbsValues.product_formula, coe_toMonoidWithZeroHom, sub_le_add, IsNontrivial.exists_abv_gt_one, Rat.AbsoluteValue.apply_le_sum_digits, Polynomial.isPrimitive_iff_forall_gaussNorm_eq_one, IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_eq_one_iff, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_add_le_max, IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_lt_one_iff, IsEquiv.log_div_log_eq_log_div_log, NumberField.FinitePlace.norm_def, NumberField.mixedEmbedding.convexBodySum_mem, exists_lt_one_one_le_of_not_isEquiv, ClassGroup.exists_mem_finset_approx', Finset.max_abv_sum_one_le, ClassGroup.exists_mem_finsetApprox, map_one, IsDedekindDomain.HeightOneSpectrum.adicAbv_of_mk'
instInhabited πŸ“–CompOpβ€”
toMonoidHom πŸ“–CompOp
1 mathmath: coe_toMonoidHom
toMonoidWithZeroHom πŸ“–CompOp
1 mathmath: coe_toMonoidWithZeroHom
toMulHom πŸ“–CompOp
4 mathmath: coe_toMulHom, nonneg', eq_zero', add_le'
trivial πŸ“–CompOp
3 mathmath: isEquiv_trivial_iff_eq_trivial, trivial_apply, eq_trivial_of_isEquiv_trivial

Theorems

NameKindAssumesProvesValidatesDepends On
abs_abv_sub_le_abv_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
β€”abs_sub_le_iff
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_sub
map_sub
IsDomain.to_noZeroDivisors
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
abs_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
funLike
abs
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”add_le'
add_le' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toMulHom
Distrib.toAdd
β€”β€”
apply_natAbs_eq πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
β€”Int.cast_natCast
Int.cast_neg
map_neg
apply_nat_le_self πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”subsingleton_or_nontrivial
Subsingleton.eq_zero
map_zero
Nat.cast_zero
Nat.cast_succ
le_imp_le_of_le_of_le
add_le
le_refl
map_one
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
coe_mk πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
DFunLike.coe
AbsoluteValue
funLike
MulHom
MulHom.funLike
β€”β€”
coe_toMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
toMonoidHom
AbsoluteValue
funLike
β€”β€”
coe_toMonoidWithZeroHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidWithZeroHom.funLike
toMonoidWithZeroHom
AbsoluteValue
funLike
β€”β€”
coe_toMulHom πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulHom.funLike
toMulHom
AbsoluteValue
funLike
β€”β€”
eq_on_nat_iff_eq_on_int πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
β€”Int.cast_natCast
Int.cast_neg
map_neg
eq_zero πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_zero'
eq_zero' πŸ“–mathematicalβ€”MulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toMulHom
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
ext πŸ“–β€”DFunLike.coe
AbsoluteValue
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
β€”ext
instMulRingNormClassOfNontrivialOfIsDomain πŸ“–mathematicalβ€”MulRingNormClass
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toNonAssocRing
funLike
β€”subadditiveHomClass
monoidWithZeroHomClass
ZeroHomClass.map_zero
MonoidWithZeroHomClass.toZeroHomClass
map_neg
MonoidWithZeroHomClass.toMonoidHomClass
eq_zero
isAbsoluteValue πŸ“–mathematicalβ€”IsAbsoluteValue
DFunLike.coe
AbsoluteValue
funLike
β€”nonneg
eq_zero
add_le
map_mul
isNontrivial_iff_ne_trivial πŸ“–mathematicalβ€”IsNontrivialβ€”trivial_apply
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
ext
eq_or_ne
map_zero
le_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_neg_cancel_right
map_neg
add_le
le_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
AbsoluteValue
Ring.toSemiring
funLike
β€”sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
sub_add_cancel
add_le
listSum_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”map_zero
zeroHomClass
LE.le.trans
add_le
add_le_add_right
map_mul πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MulHom.map_mul'
map_neg πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”neg_zero
map_zero
mul_self_eq_mul_self_iff
map_mul
neg_mul_neg
LT.lt.ne'
LT.lt.trans
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
pos
neg_ne_zero
map_one πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_one_of_isLeftRegular
IsRegular.left
IsRegular.of_ne_zero
IsDomain.toIsCancelMulZero
ne_zero
one_ne_zero
NeZero.one
map_one_of_isLeftRegular πŸ“–β€”IsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”map_mul
mul_one
map_pow πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”MonoidHom.map_pow
map_sub πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”neg_sub
map_neg
map_sub_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Ring.toSemiring
funLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_zero
sub_eq_zero
map_zero πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_zero
monoidWithZeroHomClass πŸ“–mathematicalβ€”MonoidWithZeroHomClass
AbsoluteValue
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
funLike
β€”mulHomClass
map_one
map_zero
mulHomClass πŸ“–mathematicalβ€”MulHomClass
AbsoluteValue
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
funLike
β€”zeroHomClass
MulHom.map_mul'
ne_zero πŸ“–β€”β€”β€”β€”ne_zero_iff
ne_zero_iff πŸ“–β€”β€”β€”β€”Iff.not
eq_zero
nonneg πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
funLike
β€”nonneg'
nonneg' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
toMulHom
β€”β€”
nonnegHomClass πŸ“–mathematicalβ€”NonnegHomClass
AbsoluteValue
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
funLike
β€”zeroHomClass
nonneg'
nonpos_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_zero
nonneg
not_isNontrivial_apply πŸ“–mathematicalIsNontrivialDFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”not_isNontrivial_iff
not_isNontrivial_iff πŸ“–mathematicalβ€”IsNontrivial
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”Mathlib.Tactic.Push.not_and_eq
pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
funLike
β€”pos_iff
pos_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
funLike
β€”LE.le.lt_iff_ne'
nonneg
ne_zero_iff
sub_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
Ring.toSemiring
funLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”sub_eq_add_neg
add_assoc
neg_add_cancel_left
add_le
sub_le_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
funLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”map_neg
add_le
subadditiveHomClass πŸ“–mathematicalβ€”SubadditiveHomClass
AbsoluteValue
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
funLike
β€”zeroHomClass
add_le'
trivial_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
funLike
trivial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
zeroHomClass πŸ“–mathematicalβ€”ZeroHomClass
AbsoluteValue
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
funLike
β€”eq_zero'

AbsoluteValue.IsNontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
exists_abv_gt_one πŸ“–mathematicalAbsoluteValue.IsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”Ne.lt_or_gt
map_invβ‚€
AbsoluteValue.monoidWithZeroHomClass
IsStrictOrderedRing.isDomain
DivisionRing.toNontrivial
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
AbsoluteValue.pos
exists_abv_lt_one πŸ“–mathematicalAbsoluteValue.IsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”exists_abv_gt_one
AbsoluteValue.ne_zero_iff
LT.lt.ne'
LT.lt.trans
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
inv_ne_zero
map_invβ‚€
AbsoluteValue.monoidWithZeroHomClass
IsStrictOrderedRing.isDomain
DivisionRing.toNontrivial
inv_lt_oneβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
AbsoluteValue.pos

AbsoluteValue.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

IsAbsoluteValue

Definitions

NameCategoryTheorems
abvHom πŸ“–CompOpβ€”
abvHom' πŸ“–CompOpβ€”
toAbsoluteValue πŸ“–CompOp
1 mathmath: toAbsoluteValue_apply

Theorems

NameKindAssumesProvesValidatesDepends On
abs_abv_sub_le_abv_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”AbsoluteValue.abs_abv_sub_le_abv_sub
abs_isAbsoluteValue πŸ“–mathematicalβ€”IsAbsoluteValue
Ring.toSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”AbsoluteValue.isAbsoluteValue
abv_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”abv_add'
abv_add' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
abv_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
β€”map_divβ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
instIsCancelMulZero
GroupWithZero.toNontrivial
abv_eq_zero πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”abv_eq_zero'
abv_eq_zero' πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
abv_inv πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”map_invβ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
instIsCancelMulZero
GroupWithZero.toNontrivial
abv_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”abv_mul'
abv_mul' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
abv_neg πŸ“–mathematicalβ€”NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”AbsoluteValue.map_neg
abv_nonneg πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”abv_nonneg'
abv_nonneg' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
abv_one πŸ“–mathematicalβ€”AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”AbsoluteValue.map_one
abv_one' πŸ“–mathematicalβ€”AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”AbsoluteValue.map_one_of_isLeftRegular
IsRegular.left
IsRegular.of_ne_zero
AbsoluteValue.ne_zero
one_ne_zero
NeZero.one
abv_pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”AbsoluteValue.pos_iff
abv_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”AbsoluteValue.map_pow
abv_sub πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”AbsoluteValue.map_sub
abv_sub_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”sub_eq_add_neg
add_assoc
neg_add_cancel_left
abv_add
abv_zero πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”AbsoluteValue.map_zero
sub_abv_le_abv_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”AbsoluteValue.le_sub
toAbsoluteValue_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
toAbsoluteValue
β€”β€”

IsAbsoluteValue.Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalAbv πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
IsAbsoluteValue πŸ“–CompData
6 mathmath: padicNorm.instIsAbsoluteValueRat, IsAbsoluteValue.abs_isAbsoluteValue, NormMulClass.isAbsoluteValue_norm, Padic.isAbsoluteValue, AbsoluteValue.isAbsoluteValue, Complex.isAbsoluteValueNorm

---

← Back to Index