Documentation Verification Report

AddGroupWithTop

πŸ“ Source: Mathlib/Algebra/Order/AddGroupWithTop.lean

Statistics

MetricCount
DefinitionsLinearOrderedAddCommGroupWithTop, instLinearOrderedAddCommMonoidWithTop, toAddCommMonoid, toLinearOrder, toNeg, toOrderTop, toSub, toSubNegMonoid, toSubtractionMonoid, zsmul, LinearOrderedAddCommMonoidWithTop, toAddCommMonoid, toLinearOrder, toOrderTop, instLinearOrderedAddCommGroupWithTopOfIsOrderedAddMonoid, instNeg, instSub, linearOrderedAddCommMonoidWithTop
18
Theoremsof_ne_top, add_eq_top, add_lt_top, add_ne_top, add_neg_cancel, add_neg_cancel_iff_ne_top, add_neg_cancel_left_of_ne_top, add_neg_cancel_of_ne_top, add_neg_cancel_right_of_ne_top, injective_add_left_of_ne_top, injective_add_right_of_ne_top, isAddUnit_iff, neg_add_cancel_left_of_ne_top, neg_add_cancel_of_ne_top, neg_add_cancel_right_of_ne_top, neg_eq_top, neg_pos, neg_top, strictMono_add_left_of_ne_top, strictMono_add_right_of_ne_top, sub_eq_add_neg, sub_eq_zero, sub_le_sub_iff_left_of_ne_top, sub_left_inj_of_ne_top, sub_left_injective_of_ne_top, sub_left_strictMono_of_ne_top, sub_lt_sub_iff_left_of_ne_top, sub_pos, sub_right_inj_of_ne_top, sub_right_injective_of_ne_top, sub_self_eq_zero_iff_ne_top, sub_self_eq_zero_of_ne_top, sub_self_nonneg, sub_top, toIsOrderedAddMonoid, toNontrivial, top_add', top_ne_zero, top_pos, zero_ne_top, zsmul_neg', zsmul_succ', zsmul_zero', isAddLeftRegular_of_ne_top, toIsOrderedAddMonoid, top_add', coe_neg, coe_sub, neg_top, sub_eq_top_iff, sub_top, top_sub, add_le_add_iff_left_of_ne_top, add_le_add_iff_right_of_ne_top, add_left_inj_of_ne_top, add_left_injective_of_ne_top, add_left_strictMono_of_ne_top, add_lt_add_iff_left_of_ne_top, add_lt_add_iff_right_of_ne_top, add_right_inj_of_ne_top, add_right_injective_of_ne_top, add_right_strictMono_of_ne_top, add_top, top_add
64
Total82

IsAddRegular

Theorems

NameKindAssumesProvesValidatesDepends On
of_ne_top πŸ“–mathematicalβ€”IsAddRegular
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”LinearOrderedAddCommMonoidWithTop.isAddLeftRegular_of_ne_top

LinearOrderedAddCommGroupWithTop

Definitions

NameCategoryTheorems
instLinearOrderedAddCommMonoidWithTop πŸ“–CompOp
2 mathmath: AddValuation.map_div, AddValuation.map_inv
toAddCommMonoid πŸ“–CompOp
15 mathmath: neg_add_cancel_right_of_ne_top, add_eq_top, add_neg_cancel_right_of_ne_top, neg_add_cancel_of_ne_top, add_neg_cancel, zsmul_succ', add_neg_cancel_iff_ne_top, sub_eq_add_neg, add_lt_top, add_neg_cancel_left_of_ne_top, toIsOrderedAddMonoid, zsmul_zero', neg_add_cancel_left_of_ne_top, top_add', add_neg_cancel_of_ne_top
toLinearOrder πŸ“–CompOp
14 mathmath: neg_eq_top, sub_pos, add_eq_top, sub_top, neg_pos, sub_left_strictMono_of_ne_top, top_pos, add_lt_top, neg_top, toIsOrderedAddMonoid, sub_le_sub_iff_left_of_ne_top, sub_self_nonneg, top_add', sub_lt_sub_iff_left_of_ne_top
toNeg πŸ“–CompOp
5 mathmath: add_neg_cancel, sub_eq_add_neg, neg_top, zsmul_neg', add_neg_cancel_of_ne_top
toOrderTop πŸ“–CompOp
9 mathmath: neg_eq_top, sub_pos, add_eq_top, sub_top, neg_pos, top_pos, add_lt_top, neg_top, top_add'
toSub πŸ“–CompOp
1 mathmath: sub_eq_add_neg
toSubNegMonoid πŸ“–CompOp
23 mathmath: neg_eq_top, sub_pos, sub_self_eq_zero_iff_ne_top, neg_add_cancel_right_of_ne_top, add_neg_cancel_right_of_ne_top, neg_add_cancel_of_ne_top, sub_right_injective_of_ne_top, sub_top, sub_left_strictMono_of_ne_top, top_pos, sub_left_inj_of_ne_top, add_neg_cancel_left_of_ne_top, sub_left_injective_of_ne_top, sub_eq_zero, neg_add_cancel_left_of_ne_top, sub_self_eq_zero_of_ne_top, isAddUnit_iff, AddValuation.map_div, sub_le_sub_iff_left_of_ne_top, sub_self_nonneg, ArchimedeanClass.mk_div, sub_right_inj_of_ne_top, sub_lt_sub_iff_left_of_ne_top
toSubtractionMonoid πŸ“–CompOp
8 mathmath: sub_pos, sub_self_eq_zero_iff_ne_top, add_neg_cancel_iff_ne_top, neg_pos, sub_eq_zero, sub_self_eq_zero_of_ne_top, sub_self_nonneg, AddValuation.map_inv
zsmul πŸ“–CompOp
3 mathmath: zsmul_succ', zsmul_neg', zsmul_zero'

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”not_iff_not
add_ne_top
add_lt_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
LinearOrder.toPartialOrder
toOrderTop
β€”β€”
add_ne_top πŸ“–β€”β€”β€”β€”instIsDedekindFiniteAddMonoid
add_neg_cancel πŸ“–mathematicalβ€”AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
toNeg
AddMonoid.toZero
β€”add_neg_cancel_of_ne_top
add_neg_cancel_iff_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
NegZeroClass.toZero
β€”Mathlib.Tactic.Contrapose.contrapose₃
neg_top
add_top
add_neg_cancel_of_ne_top
add_neg_cancel_left_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
SubNegMonoid.toNeg
toSubNegMonoid
β€”add_neg_cancel_of_ne_top
zero_add
add_neg_cancel_of_ne_top πŸ“–mathematicalβ€”AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
toNeg
AddMonoid.toZero
β€”β€”
add_neg_cancel_right_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
SubNegMonoid.toNeg
toSubNegMonoid
β€”add_assoc
add_neg_cancel_of_ne_top
add_zero
injective_add_left_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_left_injective_of_ne_top
injective_add_right_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_right_injective_of_ne_top
isAddUnit_iff πŸ“–mathematicalβ€”IsAddUnit
SubNegMonoid.toAddMonoid
toSubNegMonoid
β€”top_add'
IsAddUnit.of_add_eq_zero
instIsDedekindFiniteAddMonoid
add_neg_cancel_of_ne_top
neg_add_cancel_left_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
SubNegMonoid.toNeg
toSubNegMonoid
β€”neg_add_cancel_of_ne_top
zero_add
neg_add_cancel_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
SubNegMonoid.toNeg
toSubNegMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”add_comm
add_neg_cancel_of_ne_top
neg_add_cancel_right_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
toAddCommMonoid
SubNegMonoid.toNeg
toSubNegMonoid
β€”add_assoc
neg_add_cancel_of_ne_top
add_zero
neg_eq_top πŸ“–mathematicalβ€”SubNegMonoid.toNeg
toSubNegMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”add_top
add_neg_cancel_of_ne_top
neg_top
neg_pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
NegZeroClass.toNeg
Top.top
OrderTop.toTop
Preorder.toLE
LinearOrder.toPartialOrder
toOrderTop
β€”zero_sub
sub_pos
neg_top πŸ“–mathematicalβ€”toNeg
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”β€”
strictMono_add_left_of_ne_top πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_left_strictMono_of_ne_top
strictMono_add_right_of_ne_top πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_right_strictMono_of_ne_top
sub_eq_add_neg πŸ“–mathematicalβ€”toSub
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
toNeg
β€”β€”
sub_eq_zero πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
β€”sub_self_eq_zero_of_ne_top
sub_left_inj_of_ne_top
sub_le_sub_iff_left_of_ne_top πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
SubNegMonoid.toSub
toSubNegMonoid
β€”StrictMono.le_iff_le
sub_left_strictMono_of_ne_top
sub_left_inj_of_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
β€”sub_left_injective_of_ne_top
sub_left_injective_of_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
β€”sub_eq_add_neg
add_left_injective_of_ne_top
sub_left_strictMono_of_ne_top πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
SubNegMonoid.toSub
toSubNegMonoid
β€”sub_eq_add_neg
add_left_strictMono_of_ne_top
sub_lt_sub_iff_left_of_ne_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
SubNegMonoid.toSub
toSubNegMonoid
β€”StrictMono.lt_iff_lt
sub_left_strictMono_of_ne_top
sub_pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
SubNegMonoid.toSub
toSubNegMonoid
Top.top
OrderTop.toTop
Preorder.toLE
LinearOrder.toPartialOrder
toOrderTop
β€”eq_or_ne
sub_top
sub_self_eq_zero_of_ne_top
sub_right_inj_of_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
β€”sub_right_injective_of_ne_top
sub_right_injective_of_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
β€”sub_eq_add_neg
add_right_injective_of_ne_top
neg_injective
sub_self_eq_zero_iff_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
β€”sub_eq_add_neg
add_neg_cancel_iff_ne_top
sub_self_eq_zero_of_ne_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
β€”sub_self_eq_zero_iff_ne_top
sub_self_nonneg πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
toSubtractionMonoid
SubNegMonoid.toSub
toSubNegMonoid
β€”eq_or_ne
sub_top
sub_self_eq_zero_of_ne_top
le_refl
sub_top πŸ“–mathematicalβ€”SubNegMonoid.toSub
toSubNegMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”sub_eq_add_neg
neg_top
add_top
toIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
toAddCommMonoid
LinearOrder.toPartialOrder
toLinearOrder
β€”β€”
toNontrivial πŸ“–mathematicalβ€”Nontrivialβ€”β€”
top_add' πŸ“–mathematicalβ€”AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”β€”
top_ne_zero πŸ“–β€”β€”β€”β€”exists_ne
toNontrivial
top_add'
zero_add
top_pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
toSubNegMonoid
Top.top
OrderTop.toTop
Preorder.toLE
LinearOrder.toPartialOrder
toOrderTop
β€”lt_top_iff_ne_top
top_ne_zero
zero_ne_top πŸ“–β€”β€”β€”β€”top_ne_zero
zsmul_neg' πŸ“–mathematicalβ€”zsmul
toNeg
β€”β€”
zsmul_succ' πŸ“–mathematicalβ€”zsmul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
β€”β€”
zsmul_zero' πŸ“–mathematicalβ€”zsmul
AddMonoid.toZero
AddCommMonoid.toAddMonoid
toAddCommMonoid
β€”β€”

LinearOrderedAddCommMonoidWithTop

Definitions

NameCategoryTheorems
toAddCommMonoid πŸ“–CompOp
36 mathmath: add_right_strictMono_of_ne_top, AddValuation.map_pow, add_right_injective_of_ne_top, Finset.set_encard_biUnion_le, Finset.emultiplicity_prod, add_top, add_left_strictMono_of_ne_top, Set.encard_iUnion_of_finite, toIsOrderedAddMonoid, LinearOrderedAddCommGroupWithTop.injective_add_right_of_ne_top, LinearOrderedAddCommGroupWithTop.strictMono_add_left_of_ne_top, MvPowerSeries.le_weightedOrder_subst, add_le_add_iff_left_of_ne_top, add_lt_add_iff_left_of_ne_top, Set.encard_iUnion_le_of_finite, AddValuation.map_mul, isAddLeftRegular_of_ne_top, add_left_injective_of_ne_top, PowerSeries.order_prod, IsAddRegular.of_ne_top, Module.length_pi_of_fintype, top_add, top_add', Set.Finite.encard_biUnion, MvPowerSeries.order_prod, LinearOrderedAddCommGroupWithTop.strictMono_add_right_of_ne_top, add_left_inj_of_ne_top, add_right_inj_of_ne_top, Set.encard_iUnion_le_of_fintype, AddValuation.map_one, Set.Finite.encard_biUnion_le, PowerSeries.le_order_prod, LinearOrderedAddCommGroupWithTop.injective_add_left_of_ne_top, add_lt_add_iff_right_of_ne_top, MvPowerSeries.weightedOrder_prod, add_le_add_iff_right_of_ne_top
toLinearOrder πŸ“–CompOp
23 mathmath: ofDual_toAdd_zero, add_right_strictMono_of_ne_top, AddValuation.top_iff, AddValuation.map_add', add_top, AddValuation.map_add_of_distinct_val, add_left_strictMono_of_ne_top, ofAdd_bot, toIsOrderedAddMonoid, LinearOrderedAddCommGroupWithTop.strictMono_add_left_of_ne_top, AddValuation.map_zero, add_le_add_iff_left_of_ne_top, add_lt_add_iff_left_of_ne_top, AddValuation.map_sub, ofDual_toAdd_eq_top_iff, top_add, top_add', AddValuation.mem_supp_iff, LinearOrderedAddCommGroupWithTop.strictMono_add_right_of_ne_top, AddValuation.map_add, ofAdd_toDual_eq_zero_iff, add_lt_add_iff_right_of_ne_top, add_le_add_iff_right_of_ne_top
toOrderTop πŸ“–CompOp
10 mathmath: ofDual_toAdd_zero, AddValuation.top_iff, add_top, ofAdd_bot, AddValuation.map_zero, ofDual_toAdd_eq_top_iff, top_add, top_add', AddValuation.mem_supp_iff, ofAdd_toDual_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isAddLeftRegular_of_ne_top πŸ“–mathematicalβ€”IsAddLeftRegular
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
β€”β€”
toIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
toAddCommMonoid
LinearOrder.toPartialOrder
toLinearOrder
β€”β€”
top_add' πŸ“–mathematicalβ€”AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
toOrderTop
β€”β€”

WithTop

Definitions

NameCategoryTheorems
linearOrderedAddCommMonoidWithTop πŸ“–CompOp
4 mathmath: Padic.addValuation.apply, HahnSeries.addVal_le_of_coeff_ne_zero, HahnSeries.addVal_apply_of_ne, HahnSeries.addVal_apply

WithTop.LinearOrderedAddCommGroup

Definitions

NameCategoryTheorems
instLinearOrderedAddCommGroupWithTopOfIsOrderedAddMonoid πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
5 mathmath: meromorphicOrderAt_inv, PeriodPair.order_weierstrassP, coe_neg, neg_top, WithTop.untopβ‚€_neg
instSub πŸ“–CompOp
4 mathmath: sub_top, sub_eq_top_iff, top_sub, coe_sub

Theorems

NameKindAssumesProvesValidatesDepends On
coe_neg πŸ“–mathematicalβ€”WithTop.some
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
instNeg
β€”β€”
coe_sub πŸ“–mathematicalβ€”WithTop.some
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
WithTop
instSub
β€”β€”
neg_top πŸ“–mathematicalβ€”WithTop
instNeg
Top.top
WithTop.top
β€”β€”
sub_eq_top_iff πŸ“–mathematicalβ€”WithTop
instSub
Top.top
WithTop.top
β€”sub_top
top_sub
sub_top πŸ“–mathematicalβ€”WithTop
instSub
Top.top
WithTop.top
β€”β€”
top_sub πŸ“–mathematicalβ€”WithTop
instSub
Top.top
WithTop.top
β€”β€”

(root)

Definitions

NameCategoryTheorems
LinearOrderedAddCommGroupWithTop πŸ“–CompDataβ€”
LinearOrderedAddCommMonoidWithTop πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_add_iff_left_of_ne_top πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”StrictMono.le_iff_le
add_left_strictMono_of_ne_top
add_le_add_iff_right_of_ne_top πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”StrictMono.le_iff_le
add_right_strictMono_of_ne_top
add_left_inj_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_left_injective_of_ne_top
add_left_injective_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”IsAddRegular.right
IsAddRegular.of_ne_top
add_left_strictMono_of_ne_top πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”Monotone.strictMono_of_injective
add_left_mono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
add_left_injective_of_ne_top
add_lt_add_iff_left_of_ne_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”StrictMono.lt_iff_lt
add_left_strictMono_of_ne_top
add_lt_add_iff_right_of_ne_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”StrictMono.lt_iff_lt
add_right_strictMono_of_ne_top
add_right_inj_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”add_right_injective_of_ne_top
add_right_injective_of_ne_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”IsAddRegular.left
IsAddRegular.of_ne_top
add_right_strictMono_of_ne_top πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
β€”Monotone.strictMono_of_injective
add_right_mono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
add_right_injective_of_ne_top
add_top πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
β€”add_comm
top_add
top_add πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
β€”LinearOrderedAddCommMonoidWithTop.top_add'

---

← Back to Index