Documentation Verification Report

Pi

πŸ“ Source: Mathlib/Algebra/Order/Antidiag/Pi.lean

Statistics

MetricCount
DefinitionsfinAntidiagonal, aux, piAntidiag
3
TheoremsfinsetCongr_piAntidiag_eq_antidiag, map_nsmul_piAntidiag, map_nsmul_piAntidiag_univ, map_sym_eq_piAntidiag, mem_finAntidiagonal, mem_piAntidiag, nsmul_piAntidiag, nsmul_piAntidiag_univ, pairwiseDisjoint_piAntidiag_map_addRightEmbedding, piAntidiag_cons, piAntidiag_empty, piAntidiag_empty_of_ne_zero, piAntidiag_empty_zero, piAntidiag_insert, piAntidiag_univ_fin_eq_antidiagonalTuple, piAntidiag_zero
16
Total19

Finset

Definitions

NameCategoryTheorems
finAntidiagonal πŸ“–CompOp
1 mathmath: mem_finAntidiagonal
piAntidiag πŸ“–CompOp
17 mathmath: map_nsmul_piAntidiag_univ, sum_pow_eq_sum_piAntidiag, piAntidiag_zero, map_nsmul_piAntidiag, piAntidiag_insert, piAntidiag_univ_fin_eq_antidiagonalTuple, map_sym_eq_piAntidiag, piAntidiag_empty, mem_piAntidiag, sum_pow_eq_sum_piAntidiag_of_commute, piAntidiag_cons, pairwiseDisjoint_piAntidiag_map_addRightEmbedding, piAntidiag_empty_zero, finsetCongr_piAntidiag_eq_antidiag, piAntidiag_empty_of_ne_zero, nsmul_piAntidiag_univ, nsmul_piAntidiag

Theorems

NameKindAssumesProvesValidatesDepends On
finsetCongr_piAntidiag_eq_antidiag πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finset
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.finsetCongr
Equiv.boolArrowEquivProd
piAntidiag
univ
Bool.fintype
HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
β€”ext
Equiv.injective
sum_congr
sum_insert
sum_singleton
add_comm
map_nsmul_piAntidiag πŸ“–mathematicalβ€”map
AddMonoid.toNatSMul
Pi.addMonoid
Nat.instAddMonoid
mul_right_injectiveβ‚€
MulZeroClass.toZero
Nat.instMulZeroClass
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
filter
decidableDforallFinset
β€”mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
map_eq_image
nsmul_piAntidiag
map_nsmul_piAntidiag_univ πŸ“–mathematicalβ€”map
AddMonoid.toNatSMul
Pi.addMonoid
Nat.instAddMonoid
mul_right_injectiveβ‚€
MulZeroClass.toZero
Nat.instMulZeroClass
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
univ
filter
Fintype.decidableForallFintype
β€”mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
filter.congr_simp
map_nsmul_piAntidiag
map_sym_eq_piAntidiag πŸ“–mathematicalβ€”map
Sym
Multiset.count
Multiset
Multiset.card
Sym.toMultiset
Multiset.count_injective
Sym.coe_injective
sym
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
β€”ext
Multiset.count_injective
Sym.coe_injective
sum_congr
Multiset.sum_count_eq_card
Multiset.card_sum
Multiset.card_nsmul
Multiset.card_singleton
mul_one
Multiset.count_sum'
Multiset.count_nsmul
Multiset.count_singleton
mul_ite
MulZeroClass.mul_zero
sum_ite_eq
mem_finAntidiagonal πŸ“–mathematicalβ€”Finset
instMembership
finAntidiagonal
sum
univ
Fin.fintype
β€”Subtype.prop
mem_piAntidiag πŸ“–mathematicalβ€”Finset
instMembership
piAntidiag
sum
β€”piAntidiag.eq_1
Trunc.ind
sum_dite_of_true
Fintype.sum_equiv
Subtype.coe_eta
sum_attach
Fintype.card_coe
nsmul_piAntidiag πŸ“–mathematicalβ€”Finset
smulFinset
AddMonoid.toNatSMul
Pi.addMonoid
Nat.instAddMonoid
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
filter
decidableDforallFinset
β€”ext
mem_smul_finset
sum_congr
IsDomain.to_noZeroDivisors
Nat.instIsDomain
not_imp_comm
dvd_zero
mul_div_cancel_leftβ‚€
Nat.instMulDivCancelClass
nsmul_piAntidiag_univ πŸ“–mathematicalβ€”Finset
smulFinset
Fintype.decidablePiFintype
AddMonoid.toNatSMul
Pi.addMonoid
Nat.instAddMonoid
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
univ
filter
Fintype.decidableForallFintype
β€”filter.congr_simp
nsmul_piAntidiag
pairwiseDisjoint_piAntidiag_map_addRightEmbedding πŸ“–mathematicalFinset
instMembership
Set.PairwiseDisjoint
partialOrder
instOrderBot
SetLike.coe
instSetLike
HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
map
addRightEmbedding
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
piAntidiag
β€”Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
antidiagonal_congr'
addRightEmbedding.congr_simp
sum_congr
sum_add_distrib
sum_ite_eq'
add_zero
piAntidiag_cons πŸ“–mathematicalFinset
instMembership
piAntidiag
AddCancelCommMonoid.toAddCommMonoid
cons
disjiUnion
HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
map
addRightEmbedding
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
pairwiseDisjoint_piAntidiag_map_addRightEmbedding
β€”ext
Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
pairwiseDisjoint_piAntidiag_map_addRightEmbedding
sum_cons
addRightEmbedding.congr_simp
sum_update_of_notMem
Function.update_of_ne
add_zero
Function.update_self
zero_add
sum_congr
sum_add_distrib
sum_ite_eq'
piAntidiag_empty πŸ“–mathematicalβ€”piAntidiag
Finset
instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instSingleton
Pi.instZero
β€”piAntidiag_empty_zero
piAntidiag_empty_of_ne_zero
piAntidiag_empty_of_ne_zero πŸ“–mathematicalβ€”piAntidiag
Finset
instEmptyCollection
β€”eq_empty_of_forall_notMem
piAntidiag_empty_zero πŸ“–mathematicalβ€”piAntidiag
Finset
instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instSingleton
Pi.instZero
β€”ext
piAntidiag_insert πŸ“–mathematicalFinset
instMembership
piAntidiag
AddCancelCommMonoid.toAddCommMonoid
instInsert
biUnion
HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
image
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
pairwiseDisjoint_piAntidiag_map_addRightEmbedding
cons_eq_insert
add_left_injective
map_eq_image
disjiUnion.congr_simp
disjiUnion_eq_biUnion
piAntidiag_cons
piAntidiag_univ_fin_eq_antidiagonalTuple πŸ“–mathematicalβ€”piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
univ
Fin.fintype
Nat.antidiagonalTuple
β€”ext
piAntidiag_zero πŸ“–mathematicalβ€”piAntidiag
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instSingleton
Pi.instZero
β€”ext
Unique.instSubsingleton

Finset.finAntidiagonal

Definitions

NameCategoryTheorems
aux πŸ“–CompOpβ€”

---

← Back to Index