Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Order/Archimedean/Basic.lean

Statistics

MetricCount
DefinitionsfloorRing, MulArchimedean
2
TheoremsinstAddArchimedean, instArchimedean, arch, comap, archimedean, arch, comap, instMulArchimedean, instArchimedean, instMulArchimedean, instAddArchimedean, instMulArchimedean, instMulArchimedean, instArchimedean, instMulArchimedean, add_one_pow_unbounded_of_pos, archimedean_iff_int_le, archimedean_iff_int_lt, archimedean_iff_nat_le, archimedean_iff_nat_lt, archimedean_iff_rat_le, archimedean_iff_rat_lt, eq_of_forall_lt_rat_iff_lt, eq_of_forall_rat_lt_iff_lt, existsUnique_add_zpow_mem_Ioc, existsUnique_add_zsmul_mem_Ico, existsUnique_add_zsmul_mem_Ioc, existsUnique_div_zpow_mem_Ico, existsUnique_mul_zpow_mem_Ico, existsUnique_sub_zpow_mem_Ioc, existsUnique_sub_zsmul_mem_Ico, existsUnique_sub_zsmul_mem_Ioc, existsUnique_zpow_near_of_one_lt, existsUnique_zpow_near_of_one_lt', existsUnique_zsmul_near_of_pos, existsUnique_zsmul_near_of_pos', exists_div_btwn, exists_floor, exists_int_ge, exists_int_gt, exists_int_le, exists_int_lt, exists_lt_nsmul, exists_lt_pow, exists_mem_Ico_zpow, exists_mem_Ioc_zpow, exists_nat_ge, exists_nat_gt, exists_nat_one_div_lt, exists_nat_pow_near, exists_nat_pow_near_of_lt_one, exists_nsmul_lt, exists_pos_rat_lt, exists_pow_btwn, exists_pow_btwn_of_lt_mul, exists_pow_lt, exists_pow_lt_of_lt_one, exists_rat_btwn, exists_rat_gt, exists_rat_lt, exists_rat_mem_uIoo, exists_rat_near, exists_rat_pow_btwn, exists_zpow_btwn_of_lt_mul, instArchimedeanInt, instArchimedeanNNRat, instArchimedeanNat, instArchimedeanRat, instIsCodirectedOrder, instIsDirectedOrder, instMulArchimedeanNNRat, le_iff_forall_lt_rat_imp_le, le_iff_forall_rat_lt_imp_le, le_of_forall_lt_rat_imp_le, le_of_forall_rat_lt_imp_le, pow_unbounded_of_one_lt
76
Total78

AddUnits

Theorems

NameKindAssumesProvesValidatesDepends On
instAddArchimedean πŸ“–mathematicalβ€”Archimedean
AddUnits
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupAddUnits
instPartialOrderAddUnits
β€”Archimedean.arch

Additive

Theorems

NameKindAssumesProvesValidatesDepends On
instArchimedean πŸ“–mathematicalβ€”Archimedean
Additive
addCommMonoid
CommGroup.toCommMonoid
partialOrder
β€”MulArchimedean.arch

Archimedean

Definitions

NameCategoryTheorems
floorRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
arch πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
AddMonoid.toNatSMul
β€”β€”
comap πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
Archimedeanβ€”map_nsmul
AddMonoidHom.instAddMonoidHomClass
StrictMono.le_iff_le
arch
map_zero
AddMonoidHomClass.toZeroHomClass

FloorRing

Theorems

NameKindAssumesProvesValidatesDepends On
archimedean πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”archimedean_iff_int_le
Int.le_ceil

MulArchimedean

Theorems

NameKindAssumesProvesValidatesDepends On
arch πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
Monoid.toNatPow
β€”β€”
comap πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
MulArchimedeanβ€”MonoidHom.instMonoidHomClass
StrictMono.le_iff_le
arch
map_one
MonoidHomClass.toOneHomClass

Multiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
instMulArchimedean πŸ“–mathematicalβ€”MulArchimedean
Multiplicative
commMonoid
AddCommGroup.toAddCommMonoid
partialOrder
β€”Archimedean.arch

Nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
instArchimedean πŸ“–mathematicalβ€”Archimedean
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
IsOrderedAddMonoid.toAddLeftMono
Subtype.partialOrder
β€”IsOrderedAddMonoid.toAddLeftMono
Archimedean.arch
instMulArchimedean πŸ“–mathematicalβ€”MulArchimedean
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommSemiring.toCommMonoid
commSemiring
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
NonUnitalNonAssocSemiring.toAddCommMonoid
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toPosMulMono
Subtype.partialOrder
β€”IsStrictOrderedRing.toZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toPosMulMono
LT.lt.le
pow_unbounded_of_one_lt
isStrictOrderedRing
instArchimedean
existsAddOfLE

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
instAddArchimedean πŸ“–mathematicalβ€”Archimedean
OrderDual
instAddCommMonoid
AddCommGroup.toAddCommMonoid
instPartialOrder
β€”Archimedean.arch
neg_neg_iff_pos
addLeftStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
neg_le_neg_iff
covariant_swap_add_of_covariant_add
neg_nsmul
instMulArchimedean πŸ“–mathematicalβ€”MulArchimedean
OrderDual
instCommMonoid
CommGroup.toCommMonoid
instPartialOrder
β€”MulArchimedean.arch
inv_lt_one_iff_one_lt
mulLeftStrictMono
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
inv_le_inv_iff
covariant_swap_mul_of_covariant_mul
inv_pow

Units

Theorems

NameKindAssumesProvesValidatesDepends On
instMulArchimedean πŸ“–mathematicalβ€”MulArchimedean
Units
CommMonoid.toMonoid
CommGroup.toCommMonoid
instCommGroupUnits
instPartialOrderUnits
β€”MulArchimedean.arch

WithBot

Theorems

NameKindAssumesProvesValidatesDepends On
instArchimedean πŸ“–mathematicalβ€”Archimedean
WithBot
addCommMonoid
instPartialOrder
β€”LE.le.not_gt
bot_le
Archimedean.arch

WithZero

Theorems

NameKindAssumesProvesValidatesDepends On
instMulArchimedean πŸ“–mathematicalβ€”MulArchimedean
WithZero
CommMonoidWithZero.toCommMonoid
instCommMonoidWithZero
instPartialOrder
β€”LE.le.not_gt
zero_le
MulArchimedean.arch

(root)

Definitions

NameCategoryTheorems
MulArchimedean πŸ“–CompData
19 mathmath: WithZero.mulArchimedean_iff, OrderDual.instMulArchimedean, ValuativeRel.nonempty_orderIso_withZeroMul_int_iff, instMulArchimedeanNNRat, Valuation.nonempty_rankOne_iff_mulArchimedean, Valued.integer.mulArchimedean_mrange_of_isCompact_integer, OrderMonoidIso.mulArchimedean, ValuativeRel.isRankLeOne_iff_mulArchimedean, Multiplicative.instMulArchimedean, MulArchimedean.comap, SubmonoidClass.instMulArchimedean, Units.instMulArchimedean, NNReal.instMulArchimedean, WithZero.instMulArchimedean, Nonneg.instMulArchimedean, Units.mulArchimedean_iff, MulArchimedeanClass.mulArchimedean_of_mk_eq_mk, ValuativeRel.instMulArchimedeanValueGroupWithZeroOfIsRankLeOne, MulArchimedean.of_locallyFiniteOrder

Theorems

NameKindAssumesProvesValidatesDepends On
add_one_pow_unbounded_of_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
LT.lt.le
nsmul_eq_mul
lt_one_add
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
one_add_mul_le_pow_of_sq_nonneg
pow_nonneg
IsOrderedRing.toPosMulMono
Nat.instAtLeastTwoHAddOfNat
zero_le_two
add_comm
Archimedean.arch
archimedean_iff_int_le πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”archimedean_iff_int_lt
le_of_lt
lt_of_le_of_lt
Int.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_add_one
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
archimedean_iff_int_lt πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”exists_int_gt
archimedean_iff_nat_lt
LT.lt.trans_le
Int.cast_natCast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
archimedean_iff_nat_le πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”archimedean_iff_nat_lt
le_of_lt
lt_of_le_of_lt
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
archimedean_iff_nat_lt πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”exists_nat_gt
le_of_lt
nsmul_eq_mul
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
archimedean_iff_rat_le πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
DivisionRing.toRatCast
Field.toDivisionRing
β€”archimedean_iff_rat_lt
le_of_lt
lt_of_le_of_lt
Rat.cast_lt
lt_add_one
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
archimedean_iff_rat_lt πŸ“–mathematicalβ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_nat_gt
Rat.cast_natCast
archimedean_iff_nat_lt
Rat.instIsStrictOrderedRing
lt_of_lt_of_le
Nat.le_ceil
eq_of_forall_lt_rat_iff_lt πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”β€”LE.le.antisymm
le_of_forall_lt_rat_imp_le
LT.lt.le
eq_of_forall_rat_lt_iff_lt πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”β€”LE.le.antisymm
le_of_forall_rat_lt_imp_le
LT.lt.le
existsUnique_add_zpow_mem_Ioc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ioc
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
DivInvMonoid.toZPow
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
zpow_add_one
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightReflectLE_of_mulRightReflectLT
RightCancelSemigroup.toIsRightCancelMul
contravariant_swap_mul_of_contravariant_mul
contravariant_lt_of_covariant_le
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
existsUnique_zpow_near_of_one_lt
existsUnique_add_zsmul_mem_Ico πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ico
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
add_comm
neg_zsmul
sub_eq_add_neg
Set.mem_Ico
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
add_assoc
zero_add
existsUnique_zsmul_near_of_pos'
existsUnique_add_zsmul_mem_Ioc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ioc
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
add_one_zsmul
add_assoc
Set.mem_Ioc
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_sub_iff_add_le'
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
existsUnique_zsmul_near_of_pos
existsUnique_div_zpow_mem_Ico πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ico
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
DivInvMonoid.toDiv
DivInvMonoid.toZPow
β€”mul_comm
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
mul_assoc
one_mul
existsUnique_zpow_near_of_one_lt'
existsUnique_mul_zpow_mem_Ico πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ico
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
DivInvMonoid.toZPow
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
mul_comm
zpow_neg
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
mul_assoc
one_mul
existsUnique_zpow_near_of_one_lt'
existsUnique_sub_zpow_mem_Ioc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ioc
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
DivInvMonoid.toDiv
DivInvMonoid.toZPow
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
zpow_neg
div_inv_eq_mul
existsUnique_add_zpow_mem_Ioc
existsUnique_sub_zsmul_mem_Ico πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ico
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toSub
SubNegMonoid.toZSMul
β€”add_comm
Set.mem_Ico
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
add_assoc
zero_add
existsUnique_zsmul_near_of_pos'
existsUnique_sub_zsmul_mem_Ioc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Set
Set.instMembership
Set.Ioc
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toSub
SubNegMonoid.toZSMul
β€”Function.Bijective.existsUnique_iff
Equiv.bijective
neg_zsmul
sub_neg_eq_add
existsUnique_add_zsmul_mem_Ioc
existsUnique_zpow_near_of_one_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Preorder.toLE
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
β€”MulArchimedean.arch
zpow_neg
zpow_natCast
inv_inv
inv_le_inv'
zpow_le_zpow_iff_right
le_trans
Int.exists_greatest_of_bdd
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
lt_add_one
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
LE.le.antisymm
zpow_lt_zpow_iff_right
lt_of_le_of_lt
existsUnique_zpow_near_of_one_lt' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
ExistsUnique
Preorder.toLE
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
DivInvMonoid.toZPow
β€”covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
zpow_add_one
existsUnique_zpow_near_of_one_lt
existsUnique_zsmul_near_of_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Preorder.toLE
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Archimedean.arch
neg_zsmul
natCast_zsmul
neg_neg
neg_le_neg
zsmul_le_zsmul_iff_left
le_trans
Int.exists_greatest_of_bdd
Mathlib.Tactic.Contrapose.contrapose₁
not_lt
Mathlib.Tactic.Push.not_forall_eq
not_le
lt_add_one
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
LE.le.antisymm
zsmul_lt_zsmul_iff_left
lt_of_le_of_lt
existsUnique_zsmul_near_of_pos' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ExistsUnique
Preorder.toLE
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
β€”sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_one_zsmul
existsUnique_zsmul_near_of_pos
exists_div_btwn πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddGroupWithOne.toIntCast
β€”exists_floor
LT.lt.trans
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_div_iffβ‚€
lt_iff_lt_of_le_iff_le
lt_add_one
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
Int.cast_add
Int.cast_one
lt_imp_lt_of_le_of_le
add_le_add_left
le_rfl
le_refl
lt_sub_iff_add_lt'
sub_mul
div_lt_iffβ‚€'
one_div
exists_floor πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”exists_floor'
exists_int_lt
LT.lt.le
exists_int_gt
exists_int_ge πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”exists_nat_ge
Int.cast_natCast
exists_int_gt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”exists_nat_gt
Int.cast_natCast
exists_int_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”exists_int_ge
Int.cast_neg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
exists_int_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”exists_int_gt
Int.cast_neg
neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
exists_lt_nsmul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoid.toNatSMulβ€”Archimedean.arch
LE.le.trans_lt
nsmul_lt_nsmul_left
exists_lt_pow πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Monoid.toNatPowβ€”MulArchimedean.arch
LE.le.trans_lt
pow_lt_pow_right'
exists_mem_Ico_zpow πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set
Set.instMembership
Set.Ico
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”pow_unbounded_of_one_lt
zpow_neg
zpow_natCast
LT.lt.le
inv_lt_commβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_trans
inv_pos
Mathlib.Tactic.Contrapose.contrapose₁
le_trans
zpow_le_zpow_rightβ‚€
IsStrictOrderedRing.toZeroLEOneClass
Int.exists_greatest_of_bdd
lt_of_not_ge
LT.lt.not_ge
exists_mem_Ioc_zpow πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set
Set.instMembership
Set.Ioc
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”exists_mem_Ico_zpow
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_trans
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
zpow_neg
inv_lt_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zpow_pos
neg_add
neg_add_cancel_right
le_inv_commβ‚€
exists_nat_ge πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
nsmul_one
Archimedean.arch
one_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
exists_nat_gt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”nsmul_one
exists_lt_nsmul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
exists_nat_one_div_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
β€”exists_nat_gt
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_add_one_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.trans
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_lt_of_covariant_le
exists_nat_pow_near πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Preorder.toLT
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_unbounded_of_one_lt
Nat.find_spec
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
not_le_of_gt
pow_zero
ne_of_gt
le_of_not_gt
Nat.find_min
exists_nat_pow_near_of_lt_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_nat_pow_near
one_le_inv_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
one_lt_inv_iffβ‚€
inv_lt_invβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
inv_pow
inv_le_invβ‚€
exists_nsmul_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”neg_nsmul
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
exists_lt_nsmul
neg_pos
exists_pos_rat_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_rat_btwn
exists_pow_btwn πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”uniform_continuous_npow_on_bounded
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
max_lt_iff
exists_nat_ge
le_trans
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
LE.le.trans
LT.lt.le
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
DivisionRing.toNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
le_self_powβ‚€
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
le_add_of_nonneg_left
le_of_lt
Nat.find_pos
Nat.cast_zero
MulZeroClass.zero_mul
zero_pow
lt_of_not_ge
Nat.find_min
LT.lt.ne'
Eq.trans_lt
abs_eq_self
mul_nonneg
Nat.cast_nonneg'
lt_max_iff
LE.le.trans_lt
le_of_not_gt
sub_sub_cancel
sub_le_sub_right
Nat.find_spec
sub_lt_sub_left
le_abs_self
Nat.cast_succ
sub_mul
add_sub_cancel_left
one_mul
le_refl
lt_of_le_of_ne
LT.lt.ne
le_sup_right
le_sup_left
exists_pow_btwn_of_lt_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Preorder.toLE
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_pow_lt_of_lt_one
LT.lt.trans_le
LT.lt.false
LT.lt.trans
pow_zero
mul_lt_of_lt_one_right
IsStrictOrderedRing.toPosMulStrictMono
Nat.find_min
mul_lt_mul_iff_leftβ‚€
IsStrictOrderedRing.toMulPosStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
pow_succ
Nat.find_spec
exists_pow_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”inv_pow
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
exists_lt_pow
one_lt_inv'
exists_pow_lt_of_lt_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_one
LE.le.trans_lt
pow_unbounded_of_one_lt
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
inv_lt_invβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
inv_pow
exists_rat_btwn πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_nat_gt
exists_div_btwn
Rat.cast_div
IsStrictOrderedRing.toCharZero
Rat.cast_intCast
Rat.cast_natCast
exists_rat_gt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”archimedean_iff_rat_lt
exists_rat_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_int_lt
Rat.cast_intCast
exists_rat_mem_uIoo πŸ“–mathematicalβ€”Set
Set.instMembership
Set.uIoo
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_rat_btwn
min_lt_max
exists_rat_near πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DivisionRing.toRatCast
β€”exists_rat_btwn
LT.lt.trans
sub_lt_self_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_add_iff_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
abs_sub_lt_iff
sub_lt_comm
sub_lt_iff_lt_add
exists_rat_pow_btwn πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatCast
Field.toDivisionRing
β€”exists_rat_btwn
max_lt
LE.le.trans_lt
le_max_right
exists_pow_btwn
Rat.instIsStrictOrderedRing
instArchimedeanRat
Nat.cast_zero
le_max_left
LT.lt.trans
LT.lt.trans'
exists_zpow_btwn_of_lt_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”le_or_gt
exists_pow_lt_of_lt_one
LE.le.trans_lt
zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
zpow_natCast
exists_pow_btwn_of_lt_mul
lt_or_ge
zpow_zero
lt_inv_mul_iffβ‚€'
inv_mul_lt_iffβ‚€
inv_pos_of_pos
inv_le_one_of_one_leβ‚€
zpow_neg
lt_inv_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
inv_lt_commβ‚€
instArchimedeanInt πŸ“–mathematicalβ€”Archimedean
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
β€”le_trans
nsmul_eq_mul
zero_add
mul_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
instArchimedeanNNRat πŸ“–mathematicalβ€”Archimedean
NNRat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
β€”Nonneg.instArchimedean
Rat.instIsOrderedAddMonoid
instArchimedeanRat
instArchimedeanNat πŸ“–mathematicalβ€”Archimedean
Nat.instAddCommMonoid
Nat.instPartialOrder
β€”mul_one
nsmul_eq_mul
Nat.cast_id
instArchimedeanRat πŸ“–mathematicalβ€”Archimedean
Rat.addCommMonoid
Rat.instPartialOrder
β€”archimedean_iff_rat_le
Rat.instIsStrictOrderedRing
Rat.cast_id
le_refl
instIsCodirectedOrder πŸ“–mathematicalβ€”IsCodirectedOrder
Preorder.toLE
PartialOrder.toPreorder
β€”exists_int_le
le_trans
Int.cast_mono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
min_le_left
min_le_right
instIsDirectedOrder πŸ“–mathematicalβ€”IsDirectedOrder
Preorder.toLE
PartialOrder.toPreorder
β€”exists_nat_ge
exists_ge_ge
SemilatticeSup.instIsDirectedOrder
LE.le.trans
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
instMulArchimedeanNNRat πŸ“–mathematicalβ€”MulArchimedean
NNRat
CommSemiring.toCommMonoid
instCommSemiringNNRat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
β€”Nonneg.instMulArchimedean
Rat.instIsStrictOrderedRing
instArchimedeanRat
AddGroup.existsAddOfLE
le_iff_forall_lt_rat_imp_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”LE.le.trans
LT.lt.le
le_of_forall_lt_rat_imp_le
le_iff_forall_rat_lt_imp_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”LE.le.trans
LT.lt.le
le_of_forall_rat_lt_imp_le
le_of_forall_lt_rat_imp_le πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”β€”le_of_not_gt
exists_rat_btwn
LT.lt.not_ge
le_of_forall_rat_lt_imp_le πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
β€”β€”le_of_not_gt
exists_rat_btwn
LT.lt.not_ge
pow_unbounded_of_one_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_pos_add_of_lt'
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
add_comm
add_one_pow_unbounded_of_pos

---

← Back to Index