Documentation Verification Report

Expect

πŸ“ Source: Mathlib/Algebra/Order/BigOperators/Expect.lean

Statistics

MetricCount
DefinitionsevalFinsetExpect
1
Theoremsabs_expect_le, exists_lt_of_expect_lt, exists_lt_of_lt_expect, expect_eq_zero_iff_of_nonneg, expect_eq_zero_iff_of_nonpos, expect_le, expect_le_expect, expect_mul_sq_le_sq_mul_sq, expect_nonneg, expect_pos, le_expect, le_expect_nonempty_of_subadditive, le_expect_nonempty_of_subadditive_on_pred, le_expect_of_subadditive, le_expect_of_subadditive_on_pred, expect_eq_zero_iff_of_nonneg, expect_eq_zero_iff_of_nonpos
17
Total18

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
abs_expect_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
expect
AddCommGroup.toAddCommMonoid
β€”le_expect_of_subadditive
abs_zero
IsOrderedAddMonoid.toAddLeftMono
abs_add_le
abs_nnqsmul
exists_lt_of_expect_lt πŸ“–mathematicalNonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
expect
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
le_expect
exists_lt_of_lt_expect πŸ“–mathematicalNonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
expect
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
expect_le
expect_eq_zero_iff_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
expectβ€”sum_congr
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
IsStrictOrderedRing.isDomain
instIsStrictOrderedRingNNRat
CanonicallyOrderedAdd.toExistsAddOfLE
NNRat.instCanonicallyOrderedAdd
NNRat.instCharZero
sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsEmptyFalse
expect_eq_zero_iff_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
expectβ€”sum_congr
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
IsStrictOrderedRing.isDomain
instIsStrictOrderedRingNNRat
CanonicallyOrderedAdd.toExistsAddOfLE
NNRat.instCanonicallyOrderedAdd
NNRat.instCharZero
sum_eq_zero_iff_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsEmptyFalse
expect_le πŸ“–mathematicalNonempty
Preorder.toLE
PartialOrder.toPreorder
expectβ€”inv_smul_le_iff_of_pos
PosSMulMono.toPosSMulReflectLE
instIsStrictOrderedRingNNRat
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NNRat.instCharZero
Nonempty.card_pos
Nat.cast_smul_eq_nsmul
sum_le_card_nsmul
expect_le_expect πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
expectβ€”smul_le_smul_of_nonneg_left
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
zero_le
NNRat.instCanonicallyOrderedAdd
expect_mul_sq_le_sq_mul_sq πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”sum_congr
smul_pow
IsScalarTower.nnrat
SMulCommClass.nnrat
inv_pow
smul_mul_smul_comm
smul_le_smul_of_nonneg_left
sum_mul_sq_le_sq_mul_sq
zero_le
NNRat.instCanonicallyOrderedAdd
expect_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
expectβ€”smul_nonneg
zero_le
NNRat.instCanonicallyOrderedAdd
sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
expect_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nonempty
expectβ€”smul_pos
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NNRat.instCharZero
Nonempty.card_pos
sum_pos
le_expect πŸ“–mathematicalNonempty
Preorder.toLE
PartialOrder.toPreorder
expectβ€”le_inv_smul_iff_of_pos
PosSMulMono.toPosSMulReflectLE
instIsStrictOrderedRingNNRat
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NNRat.instCharZero
Nonempty.card_pos
Nat.cast_smul_eq_nsmul
card_nsmul_le_sum
le_expect_nonempty_of_subadditive πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
NNRat
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nonempty
expectβ€”le_expect_nonempty_of_subadditive_on_pred
le_expect_nonempty_of_subadditive_on_pred πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
NNRat
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nonempty
expectβ€”sum_congr
sum_induction_nonempty
smul_le_smul_of_nonneg_left
le_sum_nonempty_of_subadditive_on_pred
zero_le
NNRat.instCanonicallyOrderedAdd
le_expect_of_subadditive πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
expectβ€”le_expect_of_subadditive_on_pred
le_expect_of_subadditive_on_pred πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
expectβ€”eq_empty_or_nonempty
expect_empty
le_expect_nonempty_of_subadditive_on_pred

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
expect_eq_zero_iff_of_nonneg πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.expect
Finset.univ
β€”Finset.expect_eq_zero_iff_of_nonneg
expect_eq_zero_iff_of_nonpos πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.expect
Finset.univ
β€”Finset.expect_eq_zero_iff_of_nonpos

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalFinsetExpect πŸ“–CompOpβ€”

---

← Back to Index