Documentation Verification Report

Finset

πŸ“ Source: Mathlib/Algebra/Order/BigOperators/Group/Finset.lean

Statistics

MetricCount
Definitions0
Theoremssingle_le_sum, single_le_prod, abs_sum_le_sum_abs, abs_sum_of_nonneg, abs_sum_of_nonneg', addLECancellable_sum, add_le_sum, apply_prod_le_sum_apply, apply_sup_le_sum, apply_union_le_sum, card_biUnion_le_card_mul, card_le_card_biUnion, card_le_card_biUnion_add_card_fiber, card_le_card_biUnion_add_one, card_le_mul_card_image, card_le_mul_card_image_of_maps_to, card_nsmul_le_sum, exists_le_of_prod_le', exists_le_of_sum_le, exists_lt_of_prod_lt', exists_lt_of_sum_lt, exists_one_lt_of_prod_one_of_exists_ne_one', exists_pos_of_sum_zero_of_exists_nonzero, le_prod_nonempty_of_submultiplicative, le_prod_nonempty_of_submultiplicative_on_pred, le_prod_of_submultiplicative, le_prod_of_submultiplicative_on_pred, le_sum_card, le_sum_card_inter, le_sum_nonempty_of_subadditive, le_sum_nonempty_of_subadditive_on_pred, le_sum_of_subadditive, le_sum_of_subadditive_on_pred, max_prod_le, max_sum_le, mulLECancellable_prod, mul_card_image_le_card, mul_card_image_le_card_of_maps_to, mul_le_prod, one_le_prod', one_le_prod'', one_lt_prod, one_lt_prod', one_lt_prod_iff, one_lt_prod_iff_of_one_le, pow_card_le_prod, prod_anti_set_of_le_one, prod_eq_one_iff_of_le_one', prod_eq_one_iff_of_one_le', prod_eq_prod_iff_of_le, prod_fiberwise_le_prod_of_one_le_prod_fiber', prod_image_le_of_one_le, prod_le_one', prod_le_pow_card, prod_le_prod', prod_le_prod_fiberwise_of_prod_fiber_le_one', prod_le_prod_of_ne_one', prod_le_prod_of_subset', prod_le_prod_of_subset_of_le_one, prod_le_prod_of_subset_of_one_le', prod_le_univ_prod_of_one_le', prod_lt_one, prod_lt_one', prod_lt_one_iff_of_le_one, prod_lt_prod', prod_lt_prod_of_nonempty', prod_lt_prod_of_subset', prod_min_le, prod_mono_set', prod_mono_set_of_one_le', prod_sdiff_le_prod_sdiff, prod_sdiff_lt_prod_sdiff, single_le_prod', single_le_prod_of_canonicallyOrdered, single_le_sum, single_le_sum_of_canonicallyOrdered, single_lt_prod', single_lt_sum, sum_anti_set_of_nonpos, sum_apply_le_apply_prod, sum_card, sum_card_inter, sum_card_inter_le, sum_card_le, sum_eq_sum_iff_of_le, sum_eq_zero_iff_of_nonneg, sum_eq_zero_iff_of_nonpos, sum_fiberwise_le_sum_of_sum_fiber_nonneg, sum_image_le_of_nonneg, sum_le_card_nsmul, sum_le_one_iff, sum_le_sum, sum_le_sum_fiberwise_of_sum_fiber_nonpos, sum_le_sum_of_ne_zero, sum_le_sum_of_subset, sum_le_sum_of_subset_of_nonneg, sum_le_sum_of_subset_of_nonpos, sum_le_univ_sum_of_nonneg, sum_lt_sum, sum_lt_sum_of_nonempty, sum_lt_sum_of_subset, sum_min_le, sum_mono_set, sum_mono_set_of_nonneg, sum_neg, sum_neg', sum_neg_iff_of_nonpos, sum_nonneg, sum_nonneg', sum_nonpos, sum_pos, sum_pos', sum_pos_iff, sum_pos_iff_of_nonneg, sum_sdiff_le_sum_sdiff, sum_sdiff_lt_sum_sdiff, one_le_prod, one_lt_prod, one_lt_prod_iff_of_one_le, prod_eq_one_iff_of_le_one, prod_eq_one_iff_of_one_le, prod_le_one, prod_lt_one, prod_lt_one_iff_of_le_one, prod_mono', prod_strictMono', sum_eq_zero_iff_of_nonneg, sum_eq_zero_iff_of_nonpos, sum_mono, sum_neg, sum_neg_iff_of_nonpos, sum_nonneg, sum_nonpos, sum_pos, sum_pos_iff_of_nonneg, sum_strictMono, card_le_card_toFinset_add_one_iff, finset_sum_eq_sup_iff_disjoint, sup_powerset_len
139
Total139

CanonicallyOrderedAddCommMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
single_le_sum πŸ“–mathematicalFinset
Finset.instMembership
Preorder.toLE
PartialOrder.toPreorder
Finset.sum
β€”Finset.single_le_sum_of_canonicallyOrdered

CanonicallyOrderedCommMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
single_le_prod πŸ“–mathematicalFinset
Finset.instMembership
Preorder.toLE
PartialOrder.toPreorder
Finset.prod
β€”Finset.single_le_prod_of_canonicallyOrdered

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sum_le_sum_abs πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
sum
AddCommGroup.toAddCommMonoid
β€”le_sum_of_subadditive
Eq.le
abs_zero
IsOrderedAddMonoid.toAddLeftMono
abs_add_le
abs_sum_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
abs
AddCommGroup.toAddGroup
sum
AddCommGroup.toAddCommMonoid
β€”abs_of_nonneg
sum_nonneg
abs_sum_of_nonneg' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
abs
AddCommGroup.toAddGroup
sum
AddCommGroup.toAddCommMonoid
β€”abs_of_nonneg
sum_nonneg'
addLECancellable_sum πŸ“–mathematicalβ€”AddLECancellable
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
β€”cons_induction
addLECancellable_zero
notMem_empty
IsEmpty.forall_iff
instIsEmptyFalse
sum_cons
addLECancellable_add
mem_cons
add_le_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
AddZero.toAdd
sum
β€”mem_singleton
sum_cons
sum_singleton
sum_le_sum_of_subset_of_nonneg
cons_subset
singleton_subset_iff
apply_prod_le_sum_apply πŸ“–mathematicalPreorder.toLE
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulOne.toMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
prod
sum
β€”LE.le.trans_eq
Multiset.apply_prod_le_sum_map
Multiset.map_map
sum_map_val
apply_sup_le_sum πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SemilatticeSup.toMax
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sup
sum
β€”induction_on
Eq.le
sup_insert
sum_insert
LE.le.trans
add_le_add_right
apply_union_le_sum πŸ“–mathematicalSet
Set.instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
Set.instUnion
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.iUnion
Finset
instMembership
sum
β€”apply_sup_le_sum
sup_set_eq_biUnion
card_biUnion_le_card_mul πŸ“–mathematicalcardbiUnionβ€”LE.le.trans
card_biUnion_le
sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_le_card_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
Nonempty
card
biUnion
β€”card_biUnion
card_eq_sum_ones
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nonempty.card_pos
card_le_card_biUnion_add_card_fiber πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
card
biUnion
filter
instEmptyCollection
decidableEq
β€”card_filter_add_card_filter_not
add_comm
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_le_card_biUnion
Set.PairwiseDisjoint.subset
filter_subset
nonempty_of_ne_empty
mem_filter
le_refl
card_le_card
biUnion_subset_biUnion_of_subset_left
card_le_card_biUnion_add_one πŸ“–mathematicalFinset
Set.PairwiseDisjoint
partialOrder
instOrderBot
SetLike.coe
instSetLike
card
biUnion
β€”le_imp_le_of_le_of_le
card_le_card_biUnion_add_card_fiber
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_le_one
mem_filter
card_le_mul_card_image πŸ“–mathematicalcard
filter
imageβ€”card_le_mul_card_image_of_maps_to
mem_image_of_mem
card_le_mul_card_image_of_maps_to πŸ“–β€”Finset
instMembership
card
filter
β€”β€”card_eq_sum_card_fiberwise
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sum_const
mul_comm
card_nsmul_le_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
card
sum
β€”sum_le_card_nsmul
OrderDual.addLeftMono
exists_le_of_prod_le' πŸ“–mathematicalNonempty
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
prod
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
prod_lt_prod_of_nonempty'
exists_le_of_sum_le πŸ“–mathematicalNonempty
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
not_le
sum_lt_sum_of_nonempty
exists_lt_of_prod_lt' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
prod
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
prod_le_prod'
exists_lt_of_sum_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
not_lt
sum_le_sum
exists_one_lt_of_prod_one_of_exists_ne_one' πŸ“–mathematicalprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
ne_of_lt
prod_lt_prod'
LE.le.lt_of_ne
prod_const_one
exists_pos_of_sum_zero_of_exists_nonzero πŸ“–mathematicalsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
not_lt
ne_of_lt
sum_lt_sum
LE.le.lt_of_ne
sum_const_zero
le_prod_nonempty_of_submultiplicative πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Nonempty
prodβ€”le_prod_nonempty_of_submultiplicative_on_pred
le_prod_nonempty_of_submultiplicative_on_pred πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Nonempty
prodβ€”le_trans
Multiset.le_prod_nonempty_of_submultiplicative_on_pred
Nonempty.ne_empty
Multiset.forall_mem_map_iff
Multiset.map_map
Multiset.map_congr
le_prod_of_submultiplicative πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
prodβ€”le_trans
Multiset.le_prod_of_submultiplicative
Multiset.map_map
Multiset.map_congr
le_prod_of_submultiplicative_on_pred πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
prodβ€”eq_empty_or_nonempty
le_prod_nonempty_of_submultiplicative_on_pred
le_sum_card πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
Fintype.card
sum
Nat.instAddCommMonoid
β€”le_sum_card_inter
sum_congr
univ_inter
le_sum_card_inter πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
sum
Nat.instAddCommMonoid
instInter
β€”LE.le.trans
card_nsmul_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sum_congr
card_eq_sum_ones
sum_filter
Eq.le
sum_comm
le_sum_nonempty_of_subadditive πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nonempty
sumβ€”le_sum_nonempty_of_subadditive_on_pred
le_sum_nonempty_of_subadditive_on_pred πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nonempty
sumβ€”le_trans
Multiset.le_sum_nonempty_of_subadditive_on_pred
Multiset.map_eq_zero
val_eq_zero
Nonempty.ne_empty
Multiset.forall_mem_map_iff
Multiset.map_map
Multiset.map_congr
le_refl
le_sum_of_subadditive πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
sumβ€”le_trans
Multiset.le_sum_of_subadditive
Multiset.map_map
Multiset.map_congr
le_refl
le_sum_of_subadditive_on_pred πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
sumβ€”eq_empty_or_nonempty
le_sum_nonempty_of_subadditive_on_pred
max_prod_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
prod
β€”Multiset.max_prod_le
max_sum_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
sum
β€”Multiset.max_sum_le
mulLECancellable_prod πŸ“–mathematicalβ€”MulLECancellable
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
β€”cons_induction
instIsEmptyFalse
prod_cons
mul_card_image_le_card πŸ“–mathematicalcard
filter
imageβ€”mul_card_image_le_card_of_maps_to
mem_image_of_mem
mul_card_image_le_card_of_maps_to πŸ“–β€”Finset
instMembership
card
filter
β€”β€”sum_const
mul_comm
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_eq_sum_card_fiberwise
mul_le_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
instMembership
MulOne.toMul
prod
β€”prod_cons
prod_singleton
prod_le_prod_of_subset_of_one_le'
one_le_prod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”le_trans
prod_const_one
le_refl
prod_le_prod'
one_le_prod'' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”one_le_prod'
one_lt_prod πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Nonempty
prodβ€”lt_of_le_of_lt
prod_const_one
le_refl
prod_lt_prod_of_nonempty'
one_lt_prod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
instMembership
Preorder.toLT
prodβ€”Eq.trans_lt
prod_const_one
prod_lt_prod'
one_lt_prod_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Finset
instMembership
β€”CanonicallyOrderedMul.toIsOrderedMonoid
one_lt_prod_iff_of_one_le
IsOrderedMonoid.toMulLeftMono
one_le
one_lt_prod_iff_of_one_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
prod
Finset
instMembership
β€”one_le_prod'
LE.le.lt_iff_ne'
prod_eq_one_iff_of_one_le'
pow_card_le_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Monoid.toNatPow
CommMonoid.toMonoid
card
prod
β€”prod_le_pow_card
OrderDual.mulLeftMono
prod_anti_set_of_le_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Antitone
Finset
partialOrder
prod
β€”prod_le_prod_of_subset_of_le_one
prod_eq_one_iff_of_le_one' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”prod_eq_one_iff_of_one_le'
OrderDual.mulLeftMono
prod_eq_one_iff_of_one_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”induction_on
notMem_empty
mem_insert_of_mem
prod_insert
mul_eq_one_iff_of_one_le
covariant_swap_mul_of_covariant_mul
mem_insert_self
one_le_prod'
forall_mem_insert
prod_eq_prod_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
prodβ€”induction_on
notMem_empty
prod_insert
forall_mem_insert
mem_insert_of_mem
mul_eq_mul_iff_eq_and_eq
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
IsCancelMul.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
mem_insert_self
prod_le_prod'
prod_fiberwise_le_prod_of_one_le_prod_fiber' πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
filter
β€”β€”prod_le_prod_of_subset_of_one_le'
subset_union_left
prod_fiberwise_of_maps_to
mem_union
mem_image_of_mem
prod_image_le_of_one_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
image
β€”prod_comp
prod_le_prod'
mem_image
le_self_pow
card_pos
mem_filter
prod_le_one' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”LE.le.trans_eq
prod_le_prod'
prod_const_one
prod_le_pow_card πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
prod
Monoid.toNatPow
CommMonoid.toMonoid
card
β€”LE.le.trans
Multiset.prod_le_pow_card
Multiset.card_map
prod_le_prod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
prodβ€”Multiset.prod_map_le_prod_map
prod_le_prod_fiberwise_of_prod_fiber_le_one' πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
prod
filter
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”prod_fiberwise_le_prod_of_one_le_prod_fiber'
OrderDual.mulLeftMono
prod_le_prod_of_ne_one' πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
prod
β€”CanonicallyOrderedMul.toIsOrderedMonoid
prod_union
disjoint_filter
filter_union_filter_not_eq
mul_le_of_le_one_of_le
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
prod_le_one'
le_of_eq
prod_le_prod_of_subset'
prod_le_prod_of_subset' πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
prod
β€”CanonicallyOrderedMul.toIsOrderedMonoid
prod_le_prod_of_subset_of_one_le'
IsOrderedMonoid.toMulLeftMono
one_le
prod_le_prod_of_subset_of_le_one πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”prod_le_prod_of_subset_of_one_le'
OrderDual.mulLeftMono
prod_le_prod_of_subset_of_one_le' πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”le_mul_of_one_le_left'
covariant_swap_mul_of_covariant_mul
one_le_prod'
prod_union
sdiff_disjoint
sdiff_union_of_subset
prod_le_univ_prod_of_one_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
univ
β€”prod_le_prod_of_subset_of_one_le'
subset_univ
prod_lt_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Nonempty
prodβ€”LT.lt.trans_le
prod_lt_prod_of_nonempty'
prod_const_one
le_refl
prod_lt_one' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
instMembership
Preorder.toLT
prodβ€”LE.le.trans_lt'
Eq.le
prod_const_one
prod_lt_prod'
prod_lt_one_iff_of_le_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
prod
Finset
instMembership
β€”one_lt_prod_iff_of_one_le
OrderDual.mulLeftMono
prod_lt_prod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Finset
instMembership
Preorder.toLT
prodβ€”Multiset.prod_lt_prod'
prod_lt_prod_of_nonempty' πŸ“–mathematicalNonempty
Preorder.toLT
PartialOrder.toPreorder
prodβ€”Multiset.prod_lt_prod_of_nonempty'
prod_lt_prod_of_subset' πŸ“–mathematicalFinset
instHasSubset
instMembership
Preorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
prodβ€”prod_insert
lt_mul_of_one_lt_left'
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
IsCancelMul.toIsRightCancelMul
IsOrderedCancelMonoid.toIsCancelMul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
prod_le_prod_of_subset_of_one_le'
prod_min_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
prod
SemilatticeInf.toMin
β€”Multiset.prod_min_le
prod_mono_set' πŸ“–mathematicalβ€”Monotone
Finset
PartialOrder.toPreorder
partialOrder
prod
β€”CanonicallyOrderedMul.toIsOrderedMonoid
prod_le_prod_of_subset'
prod_mono_set_of_one_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Monotone
Finset
partialOrder
prod
β€”prod_le_prod_of_subset_of_one_le'
prod_sdiff_le_prod_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
prod
Finset
instSDiff
β€”mul_le_mul_iff_right
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
IsRightCancelMul.mulRightReflectLE_of_mulRightReflectLT
IsCancelMul.toIsRightCancelMul
IsOrderedCancelMonoid.toIsCancelMul
contravariant_swap_mul_of_contravariant_mul
IsOrderedCancelMonoid.toMulLeftReflectLT
prod_union
disjoint_sdiff_inter
sdiff_union_inter
inter_comm
prod_sdiff_lt_prod_sdiff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
prod
Finset
instSDiff
β€”mul_lt_mul_iff_right
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
IsCancelMul.toIsRightCancelMul
IsOrderedCancelMonoid.toIsCancelMul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
contravariant_swap_mul_of_contravariant_mul
IsOrderedCancelMonoid.toMulLeftReflectLT
prod_union
disjoint_sdiff_inter
sdiff_union_inter
inter_comm
single_le_prod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
instMembership
prodβ€”prod_singleton
prod_le_prod_of_subset_of_one_le'
singleton_subset_iff
single_le_prod_of_canonicallyOrdered πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
prod
β€”CanonicallyOrderedMul.toIsOrderedMonoid
single_le_prod'
IsOrderedMonoid.toMulLeftMono
one_le
single_le_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
sumβ€”sum_singleton
sum_le_sum_of_subset_of_nonneg
singleton_subset_iff
single_le_sum_of_canonicallyOrdered πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
sum
β€”CanonicallyOrderedAdd.toIsOrderedAddMonoid
single_le_sum
IsOrderedAddMonoid.toAddLeftMono
zero_le
single_lt_prod' πŸ“–mathematicalFinset
instMembership
Preorder.toLT
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
prodβ€”prod_singleton
prod_lt_prod_of_subset'
singleton_subset_iff
mem_singleton
single_lt_sum πŸ“–mathematicalFinset
instMembership
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
sumβ€”sum_singleton
sum_lt_sum_of_subset
singleton_subset_iff
mem_singleton
sum_anti_set_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Antitone
Finset
partialOrder
sum
β€”sum_le_sum_of_subset_of_nonpos
sum_apply_le_apply_prod πŸ“–mathematicalPreorder.toLE
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
MulOne.toMul
sum
prod
β€”apply_prod_le_sum_apply
OrderDual.addLeftMono
sum_card πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
sum
Nat.instAddCommMonoid
Fintype.card
β€”sum_card_inter
sum_congr
univ_inter
sum_card_inter πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
sum
Nat.instAddCommMonoid
instInter
β€”LE.le.antisymm
sum_card_inter_le
Eq.le
le_sum_card_inter
Eq.ge
sum_card_inter_le πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
sum
Nat.instAddCommMonoid
instInter
β€”le_trans
sum_congr
card_eq_sum_ones
sum_filter
Eq.le
sum_comm
sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sum_card_le πŸ“–mathematicalcard
Finset
filter
instMembership
decidableMem
sum
Nat.instAddCommMonoid
Fintype.card
β€”sum_congr
univ_inter
sum_card_inter_le
sum_eq_sum_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sumβ€”induction_on
notMem_empty
sum_insert
forall_mem_insert
mem_insert_of_mem
add_eq_add_iff_eq_and_eq
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mem_insert_self
sum_le_sum
sum_eq_zero_iff_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”induction_on
notMem_empty
mem_insert_of_mem
sum_insert
add_eq_zero_iff_of_nonneg
covariant_swap_add_of_covariant_add
mem_insert_self
sum_nonneg
forall_mem_insert
sum_eq_zero_iff_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”sum_eq_zero_iff_of_nonneg
OrderDual.addLeftMono
sum_fiberwise_le_sum_of_sum_fiber_nonneg πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
filter
β€”β€”sum_le_sum_of_subset_of_nonneg
subset_union_left
sum_fiberwise_of_maps_to
mem_union
mem_image_of_mem
sum_image_le_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
image
β€”sum_comp
sum_le_sum
mem_image
le_self_nsmul
card_pos
mem_filter
sum_le_card_nsmul πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sum
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
card
β€”LE.le.trans
Multiset.sum_le_card_nsmul
Multiset.mem_map
Multiset.card_map
le_refl
sum_le_one_iff πŸ“–mathematicalβ€”sum
Nat.instAddCommMonoid
β€”LE.le.trans
sum_mono_set
Nat.instCanonicallyOrderedAdd
sum_sdiff
singleton_subset_iff
sum_congr
sum_const_zero
sum_singleton
zero_add
Mathlib.Tactic.Push.not_and_eq
sum_le_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sumβ€”Multiset.sum_map_le_sum_map
sum_le_sum_fiberwise_of_sum_fiber_nonpos πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
sum
filter
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”sum_fiberwise_le_sum_of_sum_fiber_nonneg
OrderDual.addLeftMono
sum_le_sum_of_ne_zero πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
sum
β€”CanonicallyOrderedAdd.toIsOrderedAddMonoid
sum_union
disjoint_filter
filter_union_filter_not_eq
add_le_of_nonpos_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sum_nonpos
mem_filter
le_of_eq
sum_le_sum_of_subset
subset_iff
sum_le_sum_of_subset πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
sum
β€”CanonicallyOrderedAdd.toIsOrderedAddMonoid
sum_le_sum_of_subset_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
zero_le
sum_le_sum_of_subset_of_nonneg πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
sum_nonneg
mem_sdiff
sum_union
sdiff_disjoint
sdiff_union_of_subset
sum_le_sum_of_subset_of_nonpos πŸ“–mathematicalFinset
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”sum_le_sum_of_subset_of_nonneg
OrderDual.addLeftMono
sum_le_univ_sum_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
univ
β€”sum_le_sum_of_subset_of_nonneg
subset_univ
sum_lt_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Finset
instMembership
Preorder.toLT
sumβ€”Multiset.sum_lt_sum
sum_lt_sum_of_nonempty πŸ“–mathematicalNonempty
Preorder.toLT
PartialOrder.toPreorder
sumβ€”Multiset.sum_lt_sum_of_nonempty
val_eq_zero
not_nonempty_empty
sum_lt_sum_of_subset πŸ“–mathematicalFinset
instHasSubset
instMembership
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
sumβ€”sum_insert
lt_add_of_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
sum_le_sum_of_subset_of_nonneg
insert_subset_iff
mem_insert
sum_min_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
SemilatticeInf.toMin
β€”Multiset.sum_min_le
sum_mono_set πŸ“–mathematicalβ€”Monotone
Finset
PartialOrder.toPreorder
partialOrder
sum
β€”CanonicallyOrderedAdd.toIsOrderedAddMonoid
sum_le_sum_of_subset
sum_mono_set_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Monotone
Finset
partialOrder
sum
β€”sum_le_sum_of_subset_of_nonneg
sum_neg πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nonempty
sumβ€”LT.lt.trans_le
sum_lt_sum_of_nonempty
sum_const_zero
le_refl
sum_neg' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
Preorder.toLT
sumβ€”LE.le.trans_lt'
Eq.le
sum_const_zero
sum_lt_sum
sum_neg_iff_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
sum
Finset
instMembership
β€”sum_pos_iff_of_nonneg
OrderDual.addLeftMono
sum_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”le_trans
sum_const_zero
le_refl
sum_le_sum
sum_nonneg' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”sum_nonneg
sum_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”LE.le.trans_eq
sum_le_sum
sum_const_zero
sum_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nonempty
sumβ€”lt_of_le_of_lt
sum_const_zero
le_refl
sum_lt_sum_of_nonempty
sum_pos' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
Preorder.toLT
sumβ€”Eq.trans_lt
sum_const_zero
sum_lt_sum
sum_pos_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finset
instMembership
β€”CanonicallyOrderedAdd.toIsOrderedAddMonoid
sum_pos_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
zero_le
sum_pos_iff_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
sum
Finset
instMembership
β€”sum_nonneg
LE.le.lt_iff_ne'
sum_eq_zero_iff_of_nonneg
sum_sdiff_le_sum_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
sum
Finset
instSDiff
β€”add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
sum_union
disjoint_sdiff_inter
sdiff_union_inter
inter_comm
sum_sdiff_lt_sum_sdiff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
sum
Finset
instSDiff
β€”add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
sum_union
disjoint_sdiff_inter
sdiff_union_inter
inter_comm

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
one_le_prod πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.one_le_prod'
one_lt_prod πŸ“–mathematicalPreorder.toLT
Pi.preorder
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.one_lt_prod'
LT.lt.le
Pi.lt_def
one_lt_prod_iff_of_one_le πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
Finset.prod
Finset.univ
Pi.preorder
β€”LE.le.eq_or_lt
Finset.prod_congr
Finset.prod_const_one
prod_eq_one_iff_of_le_one πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.prod_eq_one_iff_of_le_one'
prod_eq_one_iff_of_one_le πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.prod_eq_one_iff_of_one_le'
prod_le_one πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.prod_le_one'
prod_lt_one πŸ“–mathematicalPreorder.toLT
Pi.preorder
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.univ
β€”Finset.prod_lt_one'
LT.lt.le
Pi.lt_def
prod_lt_one_iff_of_le_one πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
Finset.prod
Finset.univ
Pi.preorder
β€”LE.le.eq_or_lt
Finset.prod_congr
Finset.prod_const_one
prod_mono' πŸ“–mathematicalβ€”Monotone
Pi.preorder
PartialOrder.toPreorder
Finset.prod
Finset.univ
β€”Finset.prod_le_prod'
prod_strictMono' πŸ“–mathematicalβ€”StrictMono
Pi.preorder
PartialOrder.toPreorder
Finset.prod
Finset.univ
β€”Pi.lt_def
Finset.prod_lt_prod'
Finset.mem_univ
sum_eq_zero_iff_of_nonneg πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_eq_zero_iff_of_nonneg
Finset.mem_univ
sum_eq_zero_iff_of_nonpos πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_eq_zero_iff_of_nonpos
Finset.mem_univ
sum_mono πŸ“–mathematicalβ€”Monotone
Pi.preorder
PartialOrder.toPreorder
Finset.sum
Finset.univ
β€”Finset.sum_le_sum
sum_neg πŸ“–mathematicalPreorder.toLT
Pi.preorder
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_neg'
LT.lt.le
Finset.mem_univ
Pi.lt_def
sum_neg_iff_of_nonpos πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
Finset.sum
Finset.univ
Pi.preorder
β€”LE.le.eq_or_lt
Finset.sum_congr
Finset.sum_const_zero
lt_self_iff_false
sum_neg
sum_nonneg πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_nonneg
sum_nonpos πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_nonpos
sum_pos πŸ“–mathematicalPreorder.toLT
Pi.preorder
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
β€”Finset.sum_pos'
LT.lt.le
Finset.mem_univ
Pi.lt_def
sum_pos_iff_of_nonneg πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
Finset.sum
Finset.univ
Pi.preorder
β€”LE.le.eq_or_lt
Finset.sum_congr
Finset.sum_const_zero
lt_self_iff_false
sum_pos
sum_strictMono πŸ“–mathematicalβ€”StrictMono
Pi.preorder
PartialOrder.toPreorder
Finset.sum
Finset.univ
β€”Pi.lt_def
Finset.sum_lt_sum
Finset.mem_univ

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card_toFinset_add_one_iff πŸ“–mathematicalβ€”card
Finset.card
toFinset
count
β€”toFinset_sum_count_eq
Finset.card_eq_sum_ones
tsub_le_iff_left
Nat.instOrderedSub
Finset.sum_tsub_distrib
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Finset.sum_le_one_iff
one_le_count_iff_mem
LT.lt.le
finset_sum_eq_sup_iff_disjoint πŸ“–mathematicalβ€”Finset.sum
Multiset
AddCancelCommMonoid.toAddCommMonoid
instAddCancelCommMonoid
Finset.sup
Lattice.toSemilatticeSup
instLattice
instOrderBot
Disjoint
instPartialOrder
β€”Finset.cons_induction_on
Finset.sup_empty
instIsEmptyFalse
Finset.sum_cons
Finset.sup_cons
add_eq_union_left_of_le
Finset.sup_le
le_sum_of_mem
instCanonicallyOrderedAdd
mem_map_of_mem
sup_powerset_len πŸ“–mathematicalβ€”Finset.sup
Multiset
Lattice.toSemilatticeSup
instLattice
decidableEq
instOrderBot
Finset.range
card
powersetCard
powerset
β€”bind.eq_1
join.eq_1
Finset.range_val
Finset.sum_eq_multiset_sum
finset_sum_eq_sup_iff_disjoint
pairwise_disjoint_powersetCard
bind_powerset_len

---

← Back to Index