Documentation Verification Report

Finset

πŸ“ Source: Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean

Statistics

MetricCount
DefinitionsevalFinsetProd
1
Theoremsmap_prod, sum_le, prod_pos, coe_prod, abs_prod, le_prod_max_one, le_prod_of_submultiplicative_of_nonneg, le_prod_of_submultiplicative_on_pred_of_nonneg, prod_add_prod_le, prod_add_prod_le', prod_le_one, prod_le_prod, prod_lt_prod, prod_lt_prod_of_nonempty, prod_nonneg, prod_pos, sq_sum_div_le_sum_sq_div, sum_mul_self_eq_zero_iff, sum_mul_sq_le_sq_mul_sq, sum_sq_le_sq_sum_of_nonneg, sum_sq_le_sum_mul_sum_of_sq_eq_mul, abv_sum, map_prod, prod_ne_zero
24
Total25

AbsoluteValue

Theorems

NameKindAssumesProvesValidatesDepends On
map_prod πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
funLike
Finset.prod
CommSemiring.toCommMonoid
CommRing.toCommMonoid
β€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
monoidWithZeroHomClass
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
sum_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finset.le_sum_of_subadditive
IsOrderedRing.toIsOrderedAddMonoid
Eq.le
map_zero
zeroHomClass
add_le

CanonicallyOrderedAdd

Theorems

NameKindAssumesProvesValidatesDepends On
prod_pos πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
CommSemiring.toCommMonoid
β€”multiset_prod_pos
Multiset.forall_mem_map_iff

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
abs_prod πŸ“–mathematicalβ€”abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
prod
CommRing.toCommMonoid
β€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
IsStrictOrderedRing.toIsOrderedRing
le_prod_max_one πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
prod
CommMonoidWithZero.toCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”lt_or_ge
LT.lt.le
LT.lt.trans_le
prod_nonneg
le_sup_of_le_right
zero_le_one
prod_eq_single_of_mem
prod_le_prod
le_prod_of_submultiplicative_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulOne.toMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
prod
CommSemiring.toCommMonoid
β€”le_trans
Multiset.le_prod_of_submultiplicative_of_nonneg
IsOrderedRing.toPosMulMono
Multiset.map_map
Multiset.map_congr
le_prod_of_submultiplicative_on_pred_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulOne.toMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
prod
CommSemiring.toCommMonoid
β€”le_trans
Multiset.le_prod_of_submultiplicative_on_pred_of_nonneg
IsOrderedRing.toPosMulMono
Multiset.mem_map
Multiset.map_map
Multiset.map_congr
prod_add_prod_le πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
prod
CommSemiring.toCommMonoid
β€”prod_eq_mul_prod_diff_singleton
le_trans
right_distrib
Distrib.rightDistribClass
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
prod_le_prod
IsOrderedRing.toZeroLEOneClass
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
prod_nonneg
prod_add_prod_le' πŸ“–mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
prod
CommSemiring.toCommMonoid
β€”prod_eq_mul_prod_diff_singleton
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
right_distrib
Distrib.rightDistribClass
add_le_add
CanonicallyOrderedAdd.toAddLeftMono
covariant_swap_add_of_covariant_add
mul_le_mul_right
prod_le_prod
CanonicallyOrderedAdd.toZeroLEOneClass
MulLeftMono.toPosMulMono
zero_le
prod_le_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
prod
CommMonoidWithZero.toCommMonoid
β€”prod_const_one
prod_le_prod
prod_le_prod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
β€”cons_induction
prod_cons
posMulMono_iff_mulPosMono
CommMagma.to_isCommutative
mul_le_mul
prod_nonneg
LE.le.trans
prod_lt_prod πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Preorder.toLE
Finset
instMembership
prod
CommMonoidWithZero.toCommMonoid
β€”insert_erase
prod_insert
notMem_erase
posMulStrictMono_iff_mulPosStrictMono
CommMagma.to_isCommutative
mul_lt_mul_of_pos_of_nonneg'
PosMulStrictMono.toPosMulMono
prod_le_prod
le_of_lt
mem_of_mem_erase
prod_pos
LE.le.trans
LT.lt.le
prod_lt_prod_of_nonempty πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Nonempty
prod
CommMonoidWithZero.toCommMonoid
β€”prod_lt_prod
le_of_lt
prod_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
β€”prod_induction
mul_nonneg
zero_le_one
prod_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
β€”prod_induction
mul_pos
zero_lt_one
NeZero.one
sq_sum_div_le_sum_sq_div πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”LT.lt.le
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
div_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
sum_nonneg
sum_sq_le_sum_mul_sum_of_sq_eq_mul
div_mul_cancelβ‚€
LT.lt.ne'
sum_mul_self_eq_zero_iff πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
mul_self_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.noZeroDivisors
sum_mul_sq_le_sq_mul_sq πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”sum_sq_le_sum_mul_sum_of_sq_eq_mul
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_pow
sum_sq_le_sq_sum_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”sum_congr
sq
sum_mul_sum
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
single_le_sum
sum_sq_le_sum_mul_sum_of_sq_eq_mul πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”LE.le.eq_or_lt'
sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sum_eq_zero
sum_eq_zero_iff_of_nonneg
MulZeroClass.mul_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
zero_pow
le_of_mul_le_mul_of_pos_left
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_lt_of_covariant_le
sum_congr
mul_assoc
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.mul_one
sum_le_sum
two_mul_le_add_of_sq_eq_mul
IsStrictOrderedRing.toMulPosStrictMono
mul_nonneg
IsOrderedRing.toPosMulMono
sq_nonneg
sum_add_distrib
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt

Finset.PNat

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prod πŸ“–mathematicalβ€”PNat.val
Finset.prod
PNat
PNat.instCommMonoid
Nat.instCommMonoid
β€”map_prod
MonoidHom.instMonoidHomClass

IsAbsoluteValue

Theorems

NameKindAssumesProvesValidatesDepends On
abv_sum πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”AbsoluteValue.sum_le
map_prod πŸ“–mathematicalβ€”Finset.prod
CommSemiring.toCommMonoid
CommRing.toCommMonoid
β€”AbsoluteValue.map_prod

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalFinsetProd πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
prod_ne_zero πŸ“–β€”β€”β€”β€”Finset.prod_ne_zero_iff

---

← Back to Index