Documentation Verification Report

Multiset

📁 Source: Mathlib/Algebra/Order/BigOperators/Ring/Multiset.lean

Statistics

MetricCount
Definitions0
Theoremsmultiset_prod_pos, le_prod_of_submultiplicative_of_nonneg, le_prod_of_submultiplicative_on_pred_of_nonneg, mem_le_prod_of_one_le
4
Total4

CanonicallyOrderedAdd

Theorems

NameKindAssumesProvesValidatesDepends On
multiset_prod_pos 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Multiset.prod
CommSemiring.toCommMonoid
Multiset.quot_mk_to_coe''
Multiset.prod_coe
list_prod_pos

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
le_prod_of_submultiplicative_of_nonneg 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulZeroOneClass.toMulOneClass
MulOne.toMul
MulZeroClass.toMul
prod
CommMonoidWithZero.toCommMonoid
map
le_prod_of_submultiplicative_on_pred_of_nonneg
le_prod_of_submultiplicative_on_pred_of_nonneg 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulZeroOneClass.toMulOneClass
MulOne.toMul
MulZeroClass.toMul
prod
CommMonoidWithZero.toCommMonoid
map
induction
instIsEmptyFalse
prod_singleton
map_congr
mem_cons_of_mem
prod_induction_nonempty
prod_cons
map_cons
LE.le.trans
mem_cons_self
mul_le_mul_of_nonneg_left
mem_le_prod_of_one_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Multiset
instMembership
prod
CommMonoidWithZero.toCommMonoid
map
exists_cons_of_mem
map_cons
prod_cons
mul_one
mul_le_mul_of_nonneg_left
le_trans
zero_le_one'

---

← Back to Index