Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Order/CauSeq/Basic.lean

Statistics

MetricCount
DefinitionsCauSeq, LimZero, Pos, addGroup, addGroupWithOne, const, equiv, instAdd, instCoeFunForallNat, instCommRingOfIsAbsoluteValue, instInhabited, instIntCast, instLEAbs, instLTAbs, instMaxAbs, instMinAbs, instMul, instNatCast, instNeg, instOne, instPowNat, instPreorderAbs, instSMul, instSub, instZero, inv, ofEq, IsCauSeq
28
Theoremsabv_pos_of_not_limZero, add_apply, add_equiv_add, add_limZero, add_pos, bounded, bounded', cauchy, cauchyβ‚‚, cauchy₃, coe_add, coe_const, coe_inf, coe_inv, coe_mul, coe_neg, coe_one, coe_pow, coe_smul, coe_sub, coe_sup, coe_zero, const_add, const_apply, const_equiv, const_inj, const_inv, const_le, const_limZero, const_lt, const_mul, const_neg, const_one, const_pos, const_pow, const_smul, const_sub, const_zero, equiv_def₃, exists_gt, exists_lt, ext, ext_iff, inf_comm, inf_eq_left, inf_eq_right, inf_equiv_inf, inf_idem, inf_le_left, inf_le_right, inf_limZero, instIsScalarTower, inv_apply, inv_aux, inv_mul_cancel, isCauSeq, le_antisymm, le_inf, le_of_eq_of_le, le_of_exists, le_of_le_of_eq, le_sup_left, le_sup_right, le_total, limZero_congr, limZero_sub_rev, lt_inf, lt_irrefl, lt_of_eq_of_lt, lt_of_lt_of_eq, lt_total, lt_trans, mul_apply, mul_equiv_mul, mul_equiv_zero, mul_equiv_zero', mul_inv_cancel, mul_limZero_left, mul_limZero_right, mul_not_equiv_zero, mul_pos, neg_apply, neg_equiv_neg, neg_limZero, not_limZero_of_not_congr_zero, not_limZero_of_pos, of_near, one_apply, one_not_equiv_zero, pos_add_limZero, pow_apply, pow_equiv_pow, rat_inf_continuous_lemma, rat_sup_continuous_lemma, smul_apply, smul_equiv_smul, sub_apply, sub_equiv_sub, sub_limZero, sup_comm, sup_eq_left, sup_eq_right, sup_equiv_sup, sup_idem, sup_inf_distrib_left, sup_inf_distrib_right, sup_le, sup_limZero, sup_lt, trichotomy, zero_apply, zero_limZero, add, bounded, bounded', cauchyβ‚‚, cauchy₃, const, mul, neg, of_neg, isCauSeq_neg, rat_add_continuous_lemma, rat_inv_continuous_lemma, rat_mul_continuous_lemma
125
Total153

CauSeq

Definitions

NameCategoryTheorems
LimZero πŸ“–MathDef
10 mathmath: not_limZero_of_pos, limZero_congr, const_limZero, lim_eq_zero_iff, PadicSeq.not_limZero_const_of_nonzero, not_limZero_of_not_congr_zero, Completion.mk_eq, Completion.mk_eq_zero, trichotomy, zero_limZero
Pos πŸ“–MathDef
3 mathmath: trichotomy, Real.mk_pos, const_pos
addGroup πŸ“–CompOpβ€”
addGroupWithOne πŸ“–CompOpβ€”
const πŸ“–CompOp
32 mathmath: const_one, IsComplete.isComplete, const_lt, lim_mul, Real.cauSeq_converges, const_neg, const_add, lim_const, const_limZero, PadicSeq.not_equiv_zero_const_of_nonzero, const_inj, const_apply, equiv_lim, const_mul, const_sub, const_equiv, const_le, PadicSeq.not_limZero_const_of_nonzero, exists_lt, Real.mk_const, one_not_equiv_zero, const_zero, coe_const, Complex.equiv_limAux, PadicSeq.norm_const, exists_gt, const_inv, const_pow, const_smul, Padic.const_equiv, complete, const_pos
equiv πŸ“–CompOp
31 mathmath: inv_mul_cancel, IsComplete.isComplete, Real.ofCauchy_sup, PadicSeq.ne_zero_iff_nequiv_zero, Real.cauSeq_converges, Padic.zero_def, Real.lt_cauchy, le_antisymm, sup_eq_right, sup_eq_left, PadicSeq.not_equiv_zero_const_of_nonzero, equiv_lim, PadicInt.nthHomSeq_mul, Padic.mk_eq, const_equiv, mul_inv_cancel, inf_eq_right, Completion.cau_seq_zero_ne_one, one_not_equiv_zero, Real.mk_eq, PadicInt.nthHomSeq_add, Complex.equiv_limAux, lt_total, PadicInt.nthHomSeq_one, Completion.mk_eq_mk, inf_eq_left, PadicSeq.norm_zero_iff, Padic.const_equiv, complete, PadicSeq.eq_zero_iff_equiv_zero, Real.ofCauchy_inf
instAdd πŸ“–CompOp
13 mathmath: const_add, lim_add, add_pos, PadicSeq.norm_nonarchimedean, Real.mk_add, Completion.mk_add, pos_add_limZero, coe_add, PadicSeq.add_eq_max_of_ne, PadicInt.nthHomSeq_add, add_limZero, add_apply, add_equiv_add
instCoeFunForallNat πŸ“–CompOpβ€”
instCommRingOfIsAbsoluteValue πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instIntCast πŸ“–CompOpβ€”
instLEAbs πŸ“–CompOp
8 mathmath: le_of_exists, le_sup_left, const_le, inf_le_right, le_total, le_sup_right, Real.mk_le, inf_le_left
instLTAbs πŸ“–CompOp
7 mathmath: lt_irrefl, const_lt, Real.lt_cauchy, Real.mk_lt, exists_lt, lt_total, exists_gt
instMaxAbs πŸ“–CompOp
15 mathmath: sup_inf_distrib_right, Real.ofCauchy_sup, sup_idem, sup_lt, coe_sup, sup_equiv_sup, sup_eq_right, sup_eq_left, sup_limZero, le_sup_left, sup_le, sup_comm, le_sup_right, Real.mk_sup, sup_inf_distrib_left
instMinAbs πŸ“–CompOp
15 mathmath: sup_inf_distrib_right, inf_limZero, inf_comm, le_inf, inf_equiv_inf, inf_eq_right, inf_le_right, Real.mk_inf, lt_inf, inf_eq_left, sup_inf_distrib_left, inf_idem, coe_inf, inf_le_left, Real.ofCauchy_inf
instMul πŸ“–CompOp
19 mathmath: mul_equiv_mul, inv_mul_cancel, mul_apply, lim_mul, mul_pos, Real.mk_mul, mul_equiv_zero, PadicInt.nthHomSeq_mul, const_mul, mul_inv_cancel, mul_limZero_right, Completion.mk_mul, mul_not_equiv_zero, mul_equiv_zero', instIsScalarTower, mul_limZero_left, lim_mul_lim, PadicSeq.norm_mul, coe_mul
instNatCast πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
10 mathmath: const_neg, PadicSeq.norm_neg, neg_limZero, neg_equiv_neg, neg_apply, lim_neg, coe_neg, Completion.mk_neg, Real.mk_neg, trichotomy
instOne πŸ“–CompOp
9 mathmath: const_one, inv_mul_cancel, one_apply, Real.mk_one, mul_inv_cancel, coe_one, Completion.cau_seq_zero_ne_one, PadicInt.nthHomSeq_one, PadicSeq.norm_one
instPowNat πŸ“–CompOp
5 mathmath: pow_equiv_pow, coe_pow, pow_apply, Completion.mk_pow, const_pow
instPreorderAbs πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
6 mathmath: smul_apply, Completion.mk_smul, instIsScalarTower, smul_equiv_smul, const_smul, coe_smul
instSub πŸ“–CompOp
8 mathmath: sub_equiv_sub, sub_apply, sub_limZero, const_sub, lim_sub, coe_sub, Completion.mk_eq, Completion.mk_sub
instZero πŸ“–CompOp
11 mathmath: PadicSeq.ne_zero_iff_nequiv_zero, Padic.zero_def, zero_apply, PadicSeq.not_equiv_zero_const_of_nonzero, coe_zero, Completion.cau_seq_zero_ne_one, Real.mk_zero, const_zero, PadicSeq.norm_zero_iff, zero_limZero, PadicSeq.eq_zero_iff_equiv_zero
inv πŸ“–CompOp
7 mathmath: inv_mul_cancel, coe_inv, Completion.inv_mk, mul_inv_cancel, inv_apply, const_inv, lim_inv
ofEq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abv_pos_of_not_limZero πŸ“–mathematicalLimZeroPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLE
IsCauSeq
β€”Nat.instAtLeastTwoHAddOfNat
cauchy₃
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
sub_add_cancel
add_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
add_equiv_add πŸ“–mathematicalCauSeq
equiv
instAddβ€”add_limZero
add_limZero πŸ“–mathematicalLimZeroCauSeq
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
exists_forall_ge_and
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_pos πŸ“–mathematicalPosCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instAdd
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
exists_forall_ge_and
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
add_le_add
covariant_swap_add_of_covariant_add
bounded πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCauSeq
β€”IsCauSeq.bounded
bounded' πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCauSeq
β€”IsCauSeq.bounded'
cauchy πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsCauSeq
β€”β€”
cauchyβ‚‚ πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsCauSeq
β€”IsCauSeq.cauchyβ‚‚
cauchy₃ πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsCauSeq
β€”IsCauSeq.cauchy₃
coe_add πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instAdd
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_const πŸ“–mathematicalβ€”IsCauSeq
const
β€”β€”
coe_inf πŸ“–mathematicalβ€”IsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instMinAbs
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”β€”
coe_inv πŸ“–mathematicalLimZero
DivisionRing.toRing
IsCauSeq
inv
Pi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
coe_mul πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instMul
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_neg πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instNeg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”
coe_one πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instOne
Pi.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instPowNat
Pi.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”
coe_smul πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instSMul
Function.hasSMul
β€”β€”
coe_sub πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
coe_sup πŸ“–mathematicalβ€”IsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instMaxAbs
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”
coe_zero πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instZero
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
const_add πŸ“–mathematicalβ€”const
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CauSeq
instAdd
β€”β€”
const_apply πŸ“–mathematicalβ€”IsCauSeq
const
β€”β€”
const_equiv πŸ“–mathematicalβ€”CauSeq
equiv
const
β€”const_sub
const_limZero
sub_eq_zero
const_inj πŸ“–mathematicalβ€”constβ€”β€”
const_inv πŸ“–mathematicalβ€”const
DivisionRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
inv
β€”β€”
const_le πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”IsAbsoluteValue.abs_isAbsoluteValue
le_iff_lt_or_eq
const_lt
const_equiv
const_limZero πŸ“–mathematicalβ€”LimZero
const
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”IsAbsoluteValue.abv_eq_zero
eq_of_le_of_forall_lt_imp_le_of_dense
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsAbsoluteValue.abv_nonneg
le_of_lt
le_rfl
zero_limZero
const_lt πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”IsAbsoluteValue.abs_isAbsoluteValue
const_sub
const_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
const_mul πŸ“–mathematicalβ€”const
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CauSeq
instMul
β€”β€”
const_neg πŸ“–mathematicalβ€”const
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CauSeq
instNeg
β€”β€”
const_one πŸ“–mathematicalβ€”const
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CauSeq
instOne
β€”β€”
const_pos πŸ“–mathematicalβ€”Pos
const
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”IsAbsoluteValue.abs_isAbsoluteValue
lt_of_lt_of_le
le_rfl
const_pow πŸ“–mathematicalβ€”const
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CauSeq
instPowNat
β€”β€”
const_smul πŸ“–mathematicalβ€”const
CauSeq
instSMul
β€”β€”
const_sub πŸ“–mathematicalβ€”const
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instSub
β€”β€”
const_zero πŸ“–mathematicalβ€”const
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CauSeq
instZero
β€”β€”
equiv_def₃ πŸ“–mathematicalCauSeq
equiv
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsCauSeq
β€”Nat.instAtLeastTwoHAddOfNat
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
sub_add_sub_cancel'
exists_forall_ge_and
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
cauchy₃
exists_gt πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
bounded
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
sub_apply
const_apply
le_sub_iff_add_le'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_of_lt
abs_lt
exists_lt πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
exists_gt
const_neg
sub_neg_eq_add
add_comm
ext πŸ“–β€”IsCauSeqβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”IsCauSeqβ€”ext
inf_comm πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMinAbs
β€”inf_comm
inf_eq_left πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMinAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
inf_comm
inf_eq_right
inf_eq_right πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMinAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
min_sub_sub_right
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sub_self
min_eq_right
LE.le.trans
LT.lt.le
abs_zero
IsOrderedAddMonoid.toAddLeftMono
inf_equiv_inf
inf_idem
inf_equiv_inf πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMinAbsβ€”IsAbsoluteValue.abs_isAbsoluteValue
LE.le.trans_lt
abs_min_sub_min_le_max
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
max_lt
sup_le_iff
inf_idem πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMinAbs
β€”inf_idem
inf_le_left πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMinAbs
β€”le_of_exists
inf_le_left
inf_le_right πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMinAbs
β€”le_of_exists
inf_le_right
inf_limZero πŸ“–mathematicalLimZero
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instMinAbs
β€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
lt_inf_iff
inf_lt_iff
exists_forall_ge_and
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
CauSeq
instSMul
instMul
β€”smul_assoc
Pi.isScalarTower'
inv_apply πŸ“–mathematicalLimZero
DivisionRing.toRing
IsCauSeq
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
inv_aux πŸ“–mathematicalLimZero
DivisionRing.toRing
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
IsCauSeq
β€”abv_pos_of_not_limZero
rat_inv_continuous_lemma
exists_forall_ge_and
cauchy₃
le_rfl
inv_mul_cancel πŸ“–mathematicalLimZero
DivisionRing.toRing
CauSeq
equiv
instMul
inv
instOne
β€”abv_pos_of_not_limZero
inv_mul_cancelβ‚€
IsAbsoluteValue.abv_pos
lt_of_lt_of_le
sub_self
IsAbsoluteValue.abv_zero
isCauSeq πŸ“–mathematicalβ€”IsCauSeqβ€”β€”
le_antisymm πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
β€”not_lt_of_ge
le_inf πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMinAbsβ€”lt_inf
le_of_eq_of_le
IsAbsoluteValue.abs_isAbsoluteValue
LT.lt.le
inf_eq_right
inf_eq_left
le_of_eq_of_le πŸ“–β€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instLEAbs
β€”β€”IsAbsoluteValue.abs_isAbsoluteValue
lt_of_eq_of_lt
le_of_exists πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instLEAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
lt_total
not_lt_of_ge
le_max_left
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_of_lt_of_le
le_max_right
le_of_le_of_eq πŸ“–β€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
β€”β€”IsAbsoluteValue.abs_isAbsoluteValue
lt_of_lt_of_eq
le_sup_left πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMaxAbs
β€”le_of_exists
le_sup_left
le_sup_right πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMaxAbs
β€”le_of_exists
le_sup_right
le_total πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
lt_total
limZero_congr πŸ“–mathematicalCauSeq
equiv
LimZeroβ€”sub_add_cancel
add_limZero
limZero_sub_rev πŸ“–β€”LimZero
CauSeq
instSub
β€”β€”neg_sub
neg_limZero
lt_inf πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
instMinAbsβ€”lt_inf_iff
min_le_min
sup_le_iff
LE.le.trans_eq
min_sub_sub_right
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_irrefl πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
β€”not_limZero_of_pos
IsAbsoluteValue.abs_isAbsoluteValue
sub_self
lt_of_eq_of_lt πŸ“–β€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instLTAbs
β€”β€”IsAbsoluteValue.abs_isAbsoluteValue
pos_add_limZero
neg_limZero
sub_sub_sub_cancel_right
sub_eq_add_neg
lt_of_lt_of_eq πŸ“–β€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
β€”β€”IsAbsoluteValue.abs_isAbsoluteValue
neg_sub
sub_add_sub_cancel'
pos_add_limZero
neg_limZero
lt_total πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
neg_sub
trichotomy
lt_trans πŸ“–β€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
β€”β€”IsAbsoluteValue.abs_isAbsoluteValue
sub_add_sub_cancel'
add_pos
mul_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
mul_equiv_mul πŸ“–mathematicalCauSeq
equiv
instMulβ€”sub_mul
mul_sub
sub_add_sub_cancel
add_limZero
mul_limZero_left
mul_limZero_right
mul_equiv_zero πŸ“–mathematicalCauSeq
equiv
instZero
instMulβ€”mul_limZero_right
sub_zero
mul_equiv_zero' πŸ“–mathematicalCauSeq
equiv
instZero
instMulβ€”mul_limZero_left
sub_zero
mul_inv_cancel πŸ“–mathematicalLimZero
DivisionRing.toRing
CauSeq
equiv
instMul
inv
instOne
β€”abv_pos_of_not_limZero
mul_inv_cancelβ‚€
IsAbsoluteValue.abv_pos
lt_of_lt_of_le
sub_self
IsAbsoluteValue.abv_zero
mul_limZero_left πŸ“–mathematicalLimZeroCauSeq
instMul
β€”bounded'
mul_lt_mul''
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
IsAbsoluteValue.abv_nonneg
IsAbsoluteValue.abv_mul
div_mul_cancelβ‚€
ne_of_gt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_limZero_right πŸ“–mathematicalLimZeroCauSeq
instMul
β€”bounded'
mul_lt_mul'
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
le_of_lt
IsAbsoluteValue.abv_nonneg
IsAbsoluteValue.abv_mul
div_mul_cancelβ‚€
ne_of_gt
mul_comm
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_not_equiv_zero πŸ“–mathematicalCauSeq
equiv
instZero
instMulβ€”sub_zero
abv_pos_of_not_limZero
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
le_max_left
le_trans
le_max_right
not_le_of_gt
IsAbsoluteValue.abv_mul
mul_le_mul
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt
IsAbsoluteValue.abv_nonneg
mul_pos πŸ“–mathematicalPosCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMul
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
exists_forall_ge_and
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
mul_le_mul
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt
le_trans
neg_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”
neg_equiv_neg πŸ“–mathematicalCauSeq
equiv
instNegβ€”neg_sub'
neg_limZero
neg_limZero πŸ“–mathematicalLimZeroCauSeq
instNeg
β€”neg_one_mul
mul_limZero_right
not_limZero_of_not_congr_zero πŸ“–mathematicalCauSeq
equiv
instZero
LimZeroβ€”sub_zero
not_limZero_of_pos πŸ“–mathematicalPosLimZero
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”exists_forall_ge_and
le_rfl
not_lt_of_ge
abs_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
of_near πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
IsCauSeq
β€”β€”Nat.instAtLeastTwoHAddOfNat
exists_forall_ge_and
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
cauchy₃
le_rfl
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsAbsoluteValue.abv_sub
IsDomain.to_noZeroDivisors
Field.isDomain
sub_add_sub_cancel
add_right_comm
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
one_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
one_not_equiv_zero πŸ“–mathematicalβ€”CauSeq
equiv
const
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”le_of_not_gt
lt_irrefl
sub_zero
le_rfl
IsAbsoluteValue.abv_nonneg
le_antisymm
IsAbsoluteValue.abv_eq_zero
one_ne_zero
NeZero.one
IsDomain.toNontrivial
pos_add_limZero πŸ“–mathematicalPos
LimZero
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instAdd
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
Nat.instAtLeastTwoHAddOfNat
exists_forall_ge_and
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
le_of_lt
abs_lt
sub_self_div_two
sub_eq_add_neg
pow_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instPowNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”
pow_equiv_pow πŸ“–mathematicalCauSeq
equiv
instPowNatβ€”pow_zero
pow_succ'
mul_equiv_mul
rat_inf_continuous_lemma πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SemilatticeInf.toMinβ€”LE.le.trans_lt
abs_min_sub_min_le_max
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
max_lt
rat_sup_continuous_lemma πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”LE.le.trans_lt
abs_max_sub_max_le_max
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
max_lt
smul_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instSMul
β€”β€”
smul_equiv_smul πŸ“–mathematicalCauSeq
equiv
instSMulβ€”smul_one_mul
instIsScalarTower
mul_equiv_mul
const_equiv
sub_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
sub_equiv_sub πŸ“–mathematicalCauSeq
equiv
instSubβ€”sub_eq_add_neg
add_equiv_add
neg_equiv_neg
sub_limZero πŸ“–mathematicalLimZeroCauSeq
instSub
β€”sub_eq_add_neg
add_limZero
neg_limZero
sup_comm πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMaxAbs
β€”sup_comm
sup_eq_left πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMaxAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
sup_comm
sup_eq_right
sup_eq_right πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMaxAbs
β€”IsAbsoluteValue.abs_isAbsoluteValue
max_sub_sub_right
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sub_self
max_eq_right
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_nonneg
LE.le.trans
LT.lt.le
abs_zero
sup_equiv_sup
sup_idem
sup_equiv_sup πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
equiv
IsAbsoluteValue.abs_isAbsoluteValue
instMaxAbsβ€”IsAbsoluteValue.abs_isAbsoluteValue
LE.le.trans_lt
abs_max_sub_max_le_max
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
max_lt
sup_le_iff
sup_idem πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMaxAbs
β€”sup_idem
sup_inf_distrib_left πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMaxAbs
instMinAbs
β€”ext
max_min_distrib_left
sup_inf_distrib_right πŸ“–mathematicalβ€”CauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instMaxAbs
instMinAbs
β€”ext
max_min_distrib_right
sup_le πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
instMaxAbsβ€”sup_lt
le_of_le_of_eq
LT.lt.le
IsAbsoluteValue.abs_isAbsoluteValue
sup_eq_right
sup_eq_left
sup_limZero πŸ“–mathematicalLimZero
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instMaxAbs
β€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
lt_sup_iff
sup_lt_iff
exists_forall_ge_and
sup_lt πŸ“–mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
instMaxAbsβ€”lt_inf_iff
min_le_min
sup_le_iff
LE.le.trans_eq
min_sub_sub_left
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
trichotomy πŸ“–mathematicalβ€”Pos
LimZero
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CauSeq
instNeg
IsAbsoluteValue.abs_isAbsoluteValue
β€”IsAbsoluteValue.abs_isAbsoluteValue
abv_pos_of_not_limZero
exists_forall_ge_and
cauchy₃
le_rfl
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_add_iff_nonneg_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
le_trans
neg_le_sub_iff_le_add'
le_of_lt
abs_lt
covariant_swap_add_of_covariant_add
abs_of_nonpos
sub_le_sub_iff_right
zero_sub
le_total
zero_apply πŸ“–mathematicalβ€”IsCauSeq
CauSeq
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
zero_limZero πŸ“–mathematicalβ€”LimZero
CauSeq
instZero
β€”IsAbsoluteValue.abv_zero

IsCauSeq

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalIsCauSeqPi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”rat_add_continuous_lemma
exists_forall_ge_and
cauchy₃
le_rfl
bounded πŸ“–mathematicalIsCauSeqPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.instCanonicallyOrderedAdd
LE.le.trans
le_max_left
le_total
LE.le.trans_lt
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
add_sub_cancel
IsAbsoluteValue.abv_add
add_lt_add_of_le_of_lt
covariant_swap_add_of_covariant_add
le_rfl
bounded' πŸ“–mathematicalIsCauSeqPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”bounded
LT.lt.trans_le
lt_add_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_max_right
le_max_left
cauchyβ‚‚ πŸ“–mathematicalIsCauSeq
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”Nat.instAtLeastTwoHAddOfNat
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_of_le_of_lt
IsAbsoluteValue.abv_sub_le
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsAbsoluteValue.abv_sub
IsDomain.to_noZeroDivisors
Field.isDomain
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
cauchy₃ πŸ“–mathematicalIsCauSeq
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”cauchyβ‚‚
le_trans
const πŸ“–mathematicalβ€”IsCauSeqβ€”sub_self
IsAbsoluteValue.abv_zero
mul πŸ“–mathematicalIsCauSeqPi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”bounded'
rat_mul_continuous_lemma
exists_forall_ge_and
cauchy₃
le_rfl
neg πŸ“–mathematicalIsCauSeqPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”isCauSeq_neg
of_neg πŸ“–β€”IsCauSeq
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”isCauSeq_neg

(root)

Definitions

NameCategoryTheorems
CauSeq πŸ“–CompOp
96 mathmath: CauSeq.const_one, CauSeq.inv_mul_cancel, CauSeq.lt_irrefl, CauSeq.IsComplete.isComplete, CauSeq.sup_inf_distrib_right, Real.ofCauchy_sup, CauSeq.sup_idem, CauSeq.mul_apply, CauSeq.inf_limZero, CauSeq.const_lt, CauSeq.lim_mul, CauSeq.inf_comm, CauSeq.one_apply, Real.cauSeq_converges, CauSeq.const_neg, Padic.zero_def, Real.mk_one, CauSeq.coe_sup, CauSeq.mul_pos, CauSeq.const_add, CauSeq.lim_add, Real.lt_cauchy, CauSeq.add_pos, CauSeq.sub_apply, Real.mk_lt, CauSeq.sub_limZero, CauSeq.smul_apply, CauSeq.zero_apply, Real.mk_mul, PadicSeq.not_equiv_zero_const_of_nonzero, Real.mk_add, CauSeq.sup_limZero, CauSeq.equiv_lim, CauSeq.Completion.mk_smul, CauSeq.coe_zero, CauSeq.le_of_exists, CauSeq.Completion.mk_add, CauSeq.le_sup_left, CauSeq.const_mul, CauSeq.const_sub, CauSeq.const_equiv, CauSeq.const_le, CauSeq.lim_sub, CauSeq.mul_inv_cancel, CauSeq.sup_comm, CauSeq.pos_add_limZero, CauSeq.coe_one, CauSeq.mul_limZero_right, CauSeq.coe_sub, CauSeq.inf_le_right, CauSeq.Completion.mk_mul, CauSeq.exists_lt, CauSeq.Completion.cau_seq_zero_ne_one, CauSeq.coe_pow, CauSeq.one_not_equiv_zero, Real.mk_zero, CauSeq.pow_apply, CauSeq.le_total, CauSeq.coe_add, CauSeq.neg_limZero, CauSeq.le_sup_right, Real.mk_inf, CauSeq.const_zero, Real.mk_eq, Real.mk_sup, CauSeq.instIsScalarTower, CauSeq.Completion.mk_eq, Complex.equiv_limAux, CauSeq.neg_apply, CauSeq.lim_neg, CauSeq.lt_total, CauSeq.mul_limZero_left, CauSeq.add_limZero, CauSeq.coe_neg, CauSeq.Completion.mk_neg, CauSeq.Completion.mk_eq_mk, CauSeq.exists_gt, Real.mk_neg, CauSeq.trichotomy, CauSeq.Completion.mk_pow, CauSeq.Completion.mk_sub, CauSeq.add_apply, CauSeq.const_pow, CauSeq.sup_inf_distrib_left, CauSeq.inf_idem, CauSeq.lim_mul_lim, CauSeq.const_smul, Padic.const_equiv, Real.mk_le, CauSeq.complete, CauSeq.coe_smul, CauSeq.zero_limZero, CauSeq.coe_inf, CauSeq.inf_le_left, Real.ofCauchy_inf, CauSeq.coe_mul
IsCauSeq πŸ“–MathDef
64 mathmath: PadicInt.isCauSeq_nthHom, CauSeq.inv_aux, Padic.complete', IsCauSeq.of_decreasing_bounded, CauSeq.abv_pos_of_not_limZero, CauSeq.cauchyβ‚‚, CauSeq.mul_apply, CauSeq.ext_iff, Complex.isCauSeq_conj, Padic.exi_rat_seq_conv_cauchy, CauSeq.one_apply, IsCauSeq.const, Real.of_near, CauSeq.cauchy, CauSeq.coe_sup, PadicSeq.lift_index_left_left, CauSeq.bounded', padicNormE.defn, CauSeq.sub_apply, PadicSeq.lift_index_right, CauSeq.isCauSeq, CauSeq.smul_apply, CauSeq.zero_apply, Complex.isCauSeq_norm_exp, CauSeq.coe_inv, IsCauSeq.geo_series, CauSeq.const_apply, CauSeq.coe_zero, Padic.complete'', CauSeq.tendsto_limit, RCLike.isCauSeq_im, CauSeq.cauchySeq, Padic.exi_rat_seq_conv, CauSeq.coe_one, isCauSeq_iff_cauchySeq, CauSeq.coe_sub, PadicSeq.stationaryPoint_spec, CauSeq.coe_pow, CauSeq.pow_apply, PadicSeq.lift_index_left, CauSeq.inv_apply, CauSeq.coe_add, Complex.isCauSeq_im, PadicInt.isCauSeq_padicNorm_of_pow_dvd_sub, IsCauSeq.geo_series_const, CauSeq.coe_const, CauSeq.neg_apply, CauSeq.coe_neg, CauSeq.equiv_def₃, isCauSeq_neg, CauSeq.add_apply, IsCauSeq.of_mono_bounded, PadicSeq.stationary, CauchySeq.isCauSeq, Complex.isCauSeq_exp, RCLike.isCauSeq_re, CauSeq.bounded, Complex.isCauSeq_re, Real.isCauSeq_iff_lift, CauSeq.coe_smul, CauSeq.coe_inf, CauSeq.cauchy₃, IsCauSeq.series_ratio_test, CauSeq.coe_mul

Theorems

NameKindAssumesProvesValidatesDepends On
isCauSeq_neg πŸ“–mathematicalβ€”IsCauSeq
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”IsAbsoluteValue.abv_neg
IsStrictOrderedRing.toIsOrderedRing
IsDomain.to_noZeroDivisors
Field.isDomain
rat_add_continuous_lemma πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_eq_add_neg
neg_add_rev
add_comm
add_assoc
add_left_comm
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
rat_inv_continuous_lemma πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”mul_pos
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.trans_le
inv_sub_inv'
IsAbsoluteValue.abv_pos
IsAbsoluteValue.abv_mul
IsAbsoluteValue.abv_inv
IsAbsoluteValue.abv_sub
IsStrictOrderedRing.toIsOrderedRing
IsDomain.to_noZeroDivisors
Field.isDomain
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
lt_of_mul_lt_mul_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_assoc
inv_mul_cancel_rightβ‚€
LT.lt.ne'
mul_inv_cancelβ‚€
one_mul
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
mul_le_mul_of_nonneg_right
le_of_lt
mul_nonneg
LT.lt.le
rat_mul_continuous_lemma πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”lt_of_lt_of_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
le_max_left
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
half_pos
le_trans
le_max_right
add_lt_add_of_lt_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_lt_mul''
IsOrderedRing.toMulPosMono
IsAbsoluteValue.abv_nonneg
sub_eq_add_neg
add_mul
Distrib.rightDistribClass
neg_mul
mul_add
Distrib.leftDistribClass
mul_neg
add_left_comm
add_neg_cancel_comm
lt_of_le_of_lt
IsAbsoluteValue.abv_add
add_halves
ZeroLEOneClass.neZero.two
IsAbsoluteValue.abv_mul
div_mul_cancelβ‚€
ne_of_gt
mul_comm

---

← Back to Index