| Metric | Count |
DefinitionsCauSeq, LimZero, Pos, addGroup, addGroupWithOne, const, equiv, instAdd, instCoeFunForallNat, instCommRingOfIsAbsoluteValue, instInhabited, instIntCast, instLEAbs, instLTAbs, instMaxAbs, instMinAbs, instMul, instNatCast, instNeg, instOne, instPowNat, instPreorderAbs, instSMul, instSub, instZero, inv, ofEq, IsCauSeq | 28 |
Theoremsabv_pos_of_not_limZero, add_apply, add_equiv_add, add_limZero, add_pos, bounded, bounded', cauchy, cauchyβ, cauchyβ, coe_add, coe_const, coe_inf, coe_inv, coe_mul, coe_neg, coe_one, coe_pow, coe_smul, coe_sub, coe_sup, coe_zero, const_add, const_apply, const_equiv, const_inj, const_inv, const_le, const_limZero, const_lt, const_mul, const_neg, const_one, const_pos, const_pow, const_smul, const_sub, const_zero, equiv_defβ, exists_gt, exists_lt, ext, ext_iff, inf_comm, inf_eq_left, inf_eq_right, inf_equiv_inf, inf_idem, inf_le_left, inf_le_right, inf_limZero, instIsScalarTower, inv_apply, inv_aux, inv_mul_cancel, isCauSeq, le_antisymm, le_inf, le_of_eq_of_le, le_of_exists, le_of_le_of_eq, le_sup_left, le_sup_right, le_total, limZero_congr, limZero_sub_rev, lt_inf, lt_irrefl, lt_of_eq_of_lt, lt_of_lt_of_eq, lt_total, lt_trans, mul_apply, mul_equiv_mul, mul_equiv_zero, mul_equiv_zero', mul_inv_cancel, mul_limZero_left, mul_limZero_right, mul_not_equiv_zero, mul_pos, neg_apply, neg_equiv_neg, neg_limZero, not_limZero_of_not_congr_zero, not_limZero_of_pos, of_near, one_apply, one_not_equiv_zero, pos_add_limZero, pow_apply, pow_equiv_pow, rat_inf_continuous_lemma, rat_sup_continuous_lemma, smul_apply, smul_equiv_smul, sub_apply, sub_equiv_sub, sub_limZero, sup_comm, sup_eq_left, sup_eq_right, sup_equiv_sup, sup_idem, sup_inf_distrib_left, sup_inf_distrib_right, sup_le, sup_limZero, sup_lt, trichotomy, zero_apply, zero_limZero, add, bounded, bounded', cauchyβ, cauchyβ, const, mul, neg, of_neg, isCauSeq_neg, rat_add_continuous_lemma, rat_inv_continuous_lemma, rat_mul_continuous_lemma | 125 |
| Total | 153 |
| Name | Category | Theorems |
LimZero π | MathDef | 10 mathmath: not_limZero_of_pos, limZero_congr, const_limZero, lim_eq_zero_iff, PadicSeq.not_limZero_const_of_nonzero, not_limZero_of_not_congr_zero, Completion.mk_eq, Completion.mk_eq_zero, trichotomy, zero_limZero
|
Pos π | MathDef | 3 mathmath: trichotomy, Real.mk_pos, const_pos
|
addGroup π | CompOp | β |
addGroupWithOne π | CompOp | β |
const π | CompOp | 32 mathmath: const_one, IsComplete.isComplete, const_lt, lim_mul, Real.cauSeq_converges, const_neg, const_add, lim_const, const_limZero, PadicSeq.not_equiv_zero_const_of_nonzero, const_inj, const_apply, equiv_lim, const_mul, const_sub, const_equiv, const_le, PadicSeq.not_limZero_const_of_nonzero, exists_lt, Real.mk_const, one_not_equiv_zero, const_zero, coe_const, Complex.equiv_limAux, PadicSeq.norm_const, exists_gt, const_inv, const_pow, const_smul, Padic.const_equiv, complete, const_pos
|
equiv π | CompOp | 31 mathmath: inv_mul_cancel, IsComplete.isComplete, Real.ofCauchy_sup, PadicSeq.ne_zero_iff_nequiv_zero, Real.cauSeq_converges, Padic.zero_def, Real.lt_cauchy, le_antisymm, sup_eq_right, sup_eq_left, PadicSeq.not_equiv_zero_const_of_nonzero, equiv_lim, PadicInt.nthHomSeq_mul, Padic.mk_eq, const_equiv, mul_inv_cancel, inf_eq_right, Completion.cau_seq_zero_ne_one, one_not_equiv_zero, Real.mk_eq, PadicInt.nthHomSeq_add, Complex.equiv_limAux, lt_total, PadicInt.nthHomSeq_one, Completion.mk_eq_mk, inf_eq_left, PadicSeq.norm_zero_iff, Padic.const_equiv, complete, PadicSeq.eq_zero_iff_equiv_zero, Real.ofCauchy_inf
|
instAdd π | CompOp | 13 mathmath: const_add, lim_add, add_pos, PadicSeq.norm_nonarchimedean, Real.mk_add, Completion.mk_add, pos_add_limZero, coe_add, PadicSeq.add_eq_max_of_ne, PadicInt.nthHomSeq_add, add_limZero, add_apply, add_equiv_add
|
instCoeFunForallNat π | CompOp | β |
instCommRingOfIsAbsoluteValue π | CompOp | β |
instInhabited π | CompOp | β |
instIntCast π | CompOp | β |
instLEAbs π | CompOp | 8 mathmath: le_of_exists, le_sup_left, const_le, inf_le_right, le_total, le_sup_right, Real.mk_le, inf_le_left
|
instLTAbs π | CompOp | 7 mathmath: lt_irrefl, const_lt, Real.lt_cauchy, Real.mk_lt, exists_lt, lt_total, exists_gt
|
instMaxAbs π | CompOp | 15 mathmath: sup_inf_distrib_right, Real.ofCauchy_sup, sup_idem, sup_lt, coe_sup, sup_equiv_sup, sup_eq_right, sup_eq_left, sup_limZero, le_sup_left, sup_le, sup_comm, le_sup_right, Real.mk_sup, sup_inf_distrib_left
|
instMinAbs π | CompOp | 15 mathmath: sup_inf_distrib_right, inf_limZero, inf_comm, le_inf, inf_equiv_inf, inf_eq_right, inf_le_right, Real.mk_inf, lt_inf, inf_eq_left, sup_inf_distrib_left, inf_idem, coe_inf, inf_le_left, Real.ofCauchy_inf
|
instMul π | CompOp | 19 mathmath: mul_equiv_mul, inv_mul_cancel, mul_apply, lim_mul, mul_pos, Real.mk_mul, mul_equiv_zero, PadicInt.nthHomSeq_mul, const_mul, mul_inv_cancel, mul_limZero_right, Completion.mk_mul, mul_not_equiv_zero, mul_equiv_zero', instIsScalarTower, mul_limZero_left, lim_mul_lim, PadicSeq.norm_mul, coe_mul
|
instNatCast π | CompOp | β |
instNeg π | CompOp | 10 mathmath: const_neg, PadicSeq.norm_neg, neg_limZero, neg_equiv_neg, neg_apply, lim_neg, coe_neg, Completion.mk_neg, Real.mk_neg, trichotomy
|
instOne π | CompOp | 9 mathmath: const_one, inv_mul_cancel, one_apply, Real.mk_one, mul_inv_cancel, coe_one, Completion.cau_seq_zero_ne_one, PadicInt.nthHomSeq_one, PadicSeq.norm_one
|
instPowNat π | CompOp | 5 mathmath: pow_equiv_pow, coe_pow, pow_apply, Completion.mk_pow, const_pow
|
instPreorderAbs π | CompOp | β |
instSMul π | CompOp | 6 mathmath: smul_apply, Completion.mk_smul, instIsScalarTower, smul_equiv_smul, const_smul, coe_smul
|
instSub π | CompOp | 8 mathmath: sub_equiv_sub, sub_apply, sub_limZero, const_sub, lim_sub, coe_sub, Completion.mk_eq, Completion.mk_sub
|
instZero π | CompOp | 11 mathmath: PadicSeq.ne_zero_iff_nequiv_zero, Padic.zero_def, zero_apply, PadicSeq.not_equiv_zero_const_of_nonzero, coe_zero, Completion.cau_seq_zero_ne_one, Real.mk_zero, const_zero, PadicSeq.norm_zero_iff, zero_limZero, PadicSeq.eq_zero_iff_equiv_zero
|
inv π | CompOp | 7 mathmath: inv_mul_cancel, coe_inv, Completion.inv_mk, mul_inv_cancel, inv_apply, const_inv, lim_inv
|
ofEq π | CompOp | β |