Documentation Verification Report

BigOperators

๐Ÿ“ Source: Mathlib/Algebra/Order/CauSeq/BigOperators.lean

Statistics

MetricCount
Definitions0
Theoremsgeo_series, geo_series_const, of_abv, of_abv_le, of_decreasing_bounded, of_mono_bounded, series_ratio_test, cauchy_product
8
Total8

IsCauSeq

Theorems

NameKindAssumesProvesValidatesDepends On
geo_series ๐Ÿ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
IsCauSeq
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
โ€”of_abv
congr_simp
Finset.sum_congr
IsAbsoluteValue.abv_pow
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
geom_sum_eq
neg_div_neg_eq
neg_sub
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
of_mono_bounded
abs_of_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_nonneg
pow_le_oneโ‚€
IsOrderedRing.toPosMulMono
IsAbsoluteValue.abv_nonneg
LT.lt.le
le_of_lt
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
sub_le_self
one_mul
pow_succ'
sub_le_sub_left
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
geo_series_const ๐Ÿ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
IsCauSeq
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
โ€”congr_simp
Finset.mul_sum
mul
IsAbsoluteValue.abs_isAbsoluteValue
const
geo_series
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
of_abv ๐Ÿ“–mathematicalIsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.range
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
โ€”of_abv_le
le_rfl
of_abv_le ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.range
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
โ€”Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
le_trans
le_max_right
abs_sub_le
IsOrderedRing.toIsOrderedAddMonoid
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_of_le_of_lt
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
Finset.sum_congr
zero_add
sub_self
IsAbsoluteValue.abv_zero
Finset.sum_range_succ_comm
sub_eq_add_neg
add_assoc
le_imp_le_of_le_of_le
IsAbsoluteValue.abv_add
le_refl
add_le_add_left
add_le_add_right
le_abs_self
add_halves
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
abs_sub_comm
of_decreasing_bounded ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
IsCauSeqโ€”Archimedean.arch
lt_of_lt_of_le
lt_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
LE.le.trans_lt
neg_sub
lt_sub_iff_add_lt
add_nsmul
one_nsmul
add_lt_add_of_le_of_lt
lt_of_le_of_lt
lt_add_of_pos_right
neg_le
le_abs_self
abs_neg
Nat.find_spec
not_lt_of_ge
le_rfl
le_refl
zero_nsmul
sub_zero
Nat.find_min
GE.ge.le
Nat.rel_of_forall_rel_succ_of_le_of_le
instReflGe
instIsTransGe
not_lt
abs_of_nonpos
sub_nonpos
sub_lt_iff_lt_add'
succ_nsmul
sub_add
add_sub_cancel_right
add_lt_add_left
LE.le.trans
of_mono_bounded ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
IsCauSeqโ€”of_neg
IsAbsoluteValue.abs_isAbsoluteValue
of_decreasing_bounded
abs_neg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
series_ratio_test ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
IsCauSeq
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
โ€”abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
of_abv_le
LE.le.eq_or_lt
lt_of_lt_of_le
inv_zero
pow_succ
MulZeroClass.mul_zero
MulZeroClass.zero_mul
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_right_comm
inv_pow
div_eq_mul_inv
mul_div_cancel_rightโ‚€
GroupWithZero.toMulDivCancelClass
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
le_refl
zero_add
add_le_add
covariant_swap_add_of_covariant_add
mul_assoc
le_trans
mul_comm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
geo_series_const

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_product ๐Ÿ“–mathematicalIsCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.range
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”IsCauSeq.bounded
IsAbsoluteValue.abs_isAbsoluteValue
lt_of_le_of_lt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
IsCauSeq.cauchyโ‚‚
IsAbsoluteValue.abv_nonneg
Finset.sum_range_diag_flip
Finset.mul_sum
Finset.sum_add_distrib
Finset.sum_congr
mul_add
Distrib.leftDistribClass
sub_add_cancel
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
MulZeroClass.mul_zero
div_zero
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
two_ne_zero
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
div_div
div_mul_cancelโ‚€
ne_of_lt
mul_assoc
add_halves
lt_of_lt_of_le
two_mul
lt_add_of_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instIsOrderedAddMonoid
le_max_left
Finset.sum_le_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
le_tsub_of_add_le_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
LE.le.trans'
add_le_add
LT.lt.le
Finset.mem_range
abs_of_nonneg
Finset.sum_nonneg
Finset.sum_mul
sub_sub
sub_right_comm
sub_self
zero_sub
IsAbsoluteValue.abv_neg
IsAbsoluteValue.abv_sum
add_lt_add_of_lt_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
mul_comm
mul_lt_mul_of_pos_left
Mathlib.Meta.Positivity.pos_of_isNat
Finset.sum_range_sub_sum_range
sub_eq_add_neg
le_imp_le_of_le_of_le
IsAbsoluteValue.abv_add
le_refl
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
LE.le.trans_lt
le_abs_self
LE.le.trans
le_max_right
IsAbsoluteValue.abv_mul
add_sub_cancel

---

โ† Back to Index