Documentation Verification Report

Completion

📁 Source: Mathlib/Algebra/Order/CauSeq/Completion.lean

Statistics

MetricCount
DefinitionscommRing, divisionRing, instAddCauchy, instDivInvMonoid, instInhabitedCauchy, instIntCastCauchy, instInvCauchy, instMulCauchy, instNNRatCast, instNatCastCauchy, instNegCauchy, instOneCauchy, instPowCauchyNat, instRatCast, instReprCauchy, instSMulCauchyOfIsScalarTower, instSubCauchy, instZeroCauchy, mk, ofRat, ofRatRingHom, IsComplete, lim
23
TheoremsinstNonTrivial, cau_seq_zero_ne_one, inv_mk, inv_mul_cancel, inv_zero, mk_add, mk_eq, mk_eq_mk, mk_eq_zero, mk_mul, mk_neg, mk_pow, mk_smul, mk_sub, mul_inv_cancel, ofRatRingHom_apply, ofRat_add, ofRat_div, ofRat_injective, ofRat_intCast, ofRat_inv, ofRat_mul, ofRat_natCast, ofRat_neg, ofRat_nnratCast, ofRat_one, ofRat_ratCast, ofRat_sub, ofRat_zero, zero_ne_one, isComplete, complete, eq_lim_of_const_equiv, equiv_lim, le_lim, lim_add, lim_const, lim_eq_lim_of_equiv, lim_eq_of_equiv_const, lim_eq_zero_iff, lim_inv, lim_le, lim_lt, lim_mul, lim_mul_lim, lim_neg, lim_sub, lt_lim
48
Total71

CauSeq

Definitions

NameCategoryTheorems
IsComplete 📖CompData
4 mathmath: Complex.instIsComplete, Real.instIsCompleteAbs, PadicInt.complete, Padic.complete
lim 📖CompOp
25 mathmath: Complex.lim_conj, le_lim, Complex.exp_def, lim_mul, lim_add, lt_lim, lim_const, equiv_lim, lim_eq_of_equiv_const, lim_eq_zero_iff, tendsto_limit, lim_sub, lim_lt, lim_le, Complex.lim_im, limit_zero_of_norm_tendsto_zero, lim_eq_lim_of_equiv, Complex.lim_norm, Padic.padicNormE_lim_le, lim_neg, lim_mul_lim, lim_inv, Complex.lim_re, eq_lim_of_const_equiv, Complex.lim_eq_lim_im_add_lim_re

Theorems

NameKindAssumesProvesValidatesDepends On
complete 📖mathematicalCauSeq
equiv
const
IsComplete.isComplete
eq_lim_of_const_equiv 📖mathematicalCauSeq
equiv
const
limconst_equiv
equiv_lim
equiv_lim 📖mathematicalCauSeq
equiv
const
lim
complete
le_lim 📖mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
lim
IsAbsoluteValue.abs_isAbsoluteValue
const_le
le_of_le_of_eq
equiv_lim
lim_add 📖mathematicalDistrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
lim
CauSeq
instAdd
eq_lim_of_const_equiv
const_add
add_sub_add_comm
add_limZero
equiv_lim
lim_const 📖mathematicallim
const
lim_eq_of_equiv_const
lim_eq_lim_of_equiv 📖mathematicalCauSeq
equiv
limlim_eq_of_equiv_const
equiv_lim
lim_eq_of_equiv_const 📖mathematicalCauSeq
equiv
const
limeq_lim_of_const_equiv
lim_eq_zero_iff 📖mathematicallim
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LimZero
equiv_lim
limZero_congr
const_limZero
ext
sub_zero
lim_eq_of_equiv_const
lim_inv 📖mathematicalLimZero
DivisionRing.toRing
Field.toDivisionRing
lim
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
lim_eq_zero_iff
lim_eq_of_equiv_const
one_mul
mul_assoc
sub_mul
mul_comm
mul_limZero_right
inv_mul_cancel
sub_add
sub_sub
sub_add_eq_sub_sub
sub_right_comm
sub_limZero
mul_right_comm
const_inv
limZero_congr
mul_limZero_left
equiv_lim
lim_le 📖mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLEAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
lim
IsAbsoluteValue.abs_isAbsoluteValue
const_le
le_of_eq_of_le
equiv_lim
lim_lt 📖mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
lim
IsAbsoluteValue.abs_isAbsoluteValue
const_lt
lt_of_eq_of_lt
equiv_lim
lim_mul 📖mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
lim
CauSeq
instMul
const
lim_mul_lim
lim_const
lim_mul_lim 📖mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
lim
CauSeq
instMul
eq_lim_of_const_equiv
coe_add
sub_mul
mul_sub
sub_add_sub_cancel'
add_limZero
mul_limZero_left
equiv_lim
mul_limZero_right
lim_neg 📖mathematicallim
CauSeq
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
lim_eq_of_equiv_const
const_neg
sub_neg_eq_add
add_comm
sub_eq_add_neg
equiv_lim
lim_sub 📖mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
lim
CauSeq
instSub
sub_eq_add_neg
lim_neg
lim_add
lt_lim 📖mathematicalCauSeq
DivisionRing.toRing
Field.toDivisionRing
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instLTAbs
const
IsAbsoluteValue.abs_isAbsoluteValue
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
lim
IsAbsoluteValue.abs_isAbsoluteValue
const_lt
lt_of_lt_of_eq
equiv_lim

CauSeq.Completion

Definitions

NameCategoryTheorems
instAddCauchy 📖CompOp
6 mathmath: ofRat_add, mk_add, Real.cauchy_add, Real.ofCauchy_add, Real.ringEquivCauchy_apply, Real.ringEquivCauchy_symm_apply_cauchy
instDivInvMonoid 📖CompOp
2 mathmath: ofRat_div, Real.ofCauchy_div
instInhabitedCauchy 📖CompOp
instIntCastCauchy 📖CompOp
3 mathmath: Real.ofCauchy_intCast, Real.cauchy_intCast, ofRat_intCast
instInvCauchy 📖CompOp
7 mathmath: ofRat_inv, Real.cauchy_inv, inv_mk, inv_zero, mul_inv_cancel, inv_mul_cancel, Real.ofCauchy_inv
instMulCauchy 📖CompOp
8 mathmath: ofRat_mul, Real.ofCauchy_mul, mk_mul, mul_inv_cancel, inv_mul_cancel, Real.cauchy_mul, Real.ringEquivCauchy_apply, Real.ringEquivCauchy_symm_apply_cauchy
instNNRatCast 📖CompOp
3 mathmath: Real.ofCauchy_nnratCast, Real.cauchy_nnratCast, ofRat_nnratCast
instNatCastCauchy 📖CompOp
3 mathmath: Real.ofCauchy_natCast, Real.cauchy_natCast, ofRat_natCast
instNegCauchy 📖CompOp
4 mathmath: Real.cauchy_neg, Real.ofCauchy_neg, mk_neg, ofRat_neg
instOneCauchy 📖CompOp
5 mathmath: ofRat_one, mul_inv_cancel, inv_mul_cancel, Real.ofCauchy_one, Real.cauchy_one
instPowCauchyNat 📖CompOp
1 mathmath: mk_pow
instRatCast 📖CompOp
4 mathmath: ofRat_ratCast, ofRat_rat, Real.ofCauchy_ratCast, Real.cauchy_ratCast
instReprCauchy 📖CompOp
instSMulCauchyOfIsScalarTower 📖CompOp
1 mathmath: mk_smul
instSubCauchy 📖CompOp
4 mathmath: Real.cauchy_sub, Real.ofCauchy_sub, ofRat_sub, mk_sub
instZeroCauchy 📖CompOp
6 mathmath: Real.ofCauchy_zero, inv_zero, ofRat_zero, Real.cauchy_zero, mk_eq_zero, PadicSeq.eq_zero_iff_equiv_zero
mk 📖CompOp
ofRat 📖CompOp
15 mathmath: ofRat_div, ofRat_inv, ofRat_mul, ofRat_ratCast, ofRat_rat, ofRat_one, ofRat_add, ofRat_sub, ofRat_nnratCast, ofRat_zero, ofRat_injective, ofRatRingHom_apply, ofRat_intCast, ofRat_natCast, ofRat_neg
ofRatRingHom 📖CompOp
1 mathmath: ofRatRingHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
cau_seq_zero_ne_one 📖mathematicalCauSeq
DivisionRing.toRing
CauSeq.equiv
CauSeq.instZero
CauSeq.instOne
sub_zero
one_ne_zero
NeZero.one
DivisionRing.toNontrivial
CauSeq.const_limZero
inv_mk 📖mathematicalCauSeq.LimZero
DivisionRing.toRing
Cauchy
instInvCauchy
CauSeq.inv
inv_mul_cancel 📖mathematicalCauchy
DivisionRing.toRing
instMulCauchy
instInvCauchy
instOneCauchy
CauSeq.inv_mul_cancel
inv_zero 📖mathematicalCauchy
DivisionRing.toRing
instInvCauchy
instZeroCauchy
CauSeq.zero_limZero
mk_add 📖mathematicalCauchy
instAddCauchy
CauSeq
CauSeq.instAdd
mk_eq 📖mathematicalCauSeq.LimZero
CauSeq
CauSeq.instSub
Quotient.eq
mk_eq_mk 📖mathematicalCauSeq
CauSeq.equiv
mk_eq_zero 📖mathematicalCauchy
instZeroCauchy
CauSeq.LimZero
Quotient.eq
sub_zero
mk_mul 📖mathematicalCauchy
instMulCauchy
CauSeq
CauSeq.instMul
mk_neg 📖mathematicalCauchy
instNegCauchy
CauSeq
CauSeq.instNeg
mk_pow 📖mathematicalCauchy
instPowCauchyNat
CauSeq
CauSeq.instPowNat
mk_smul 📖mathematicalCauchy
instSMulCauchyOfIsScalarTower
CauSeq
CauSeq.instSMul
mk_sub 📖mathematicalCauchy
instSubCauchy
CauSeq
CauSeq.instSub
mul_inv_cancel 📖mathematicalCauchy
DivisionRing.toRing
instMulCauchy
instInvCauchy
instOneCauchy
CauSeq.mul_inv_cancel
ofRatRingHom_apply 📖mathematicalDFunLike.coe
RingHom
Cauchy
Semiring.toNonAssocSemiring
Ring.toSemiring
Cauchy.ring
RingHom.instFunLike
ofRatRingHom
ofRat
ofRat_add 📖mathematicalofRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Cauchy
instAddCauchy
CauSeq.const_add
ofRat_div 📖mathematicalofRat
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Cauchy
instDivInvMonoid
div_eq_mul_inv
ofRat_mul
ofRat_inv
ofRat_injective 📖mathematicalCauchy
ofRat
ofRat_intCast 📖mathematicalofRat
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Cauchy
instIntCastCauchy
ofRat_inv 📖mathematicalofRat
DivisionRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
Cauchy
instInvCauchy
CauSeq.const.congr_simp
CauSeq.const_limZero
GroupWithZero.inv_zero
ofRat_mul 📖mathematicalofRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Cauchy
instMulCauchy
CauSeq.const_mul
ofRat_natCast 📖mathematicalofRat
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Cauchy
instNatCastCauchy
ofRat_neg 📖mathematicalofRat
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Cauchy
instNegCauchy
CauSeq.const_neg
ofRat_nnratCast 📖mathematicalofRat
DivisionRing.toRing
NNRat.cast
DivisionRing.toNNRatCast
Cauchy
instNNRatCast
ofRat_one 📖mathematicalofRat
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Cauchy
instOneCauchy
ofRat_ratCast 📖mathematicalofRat
DivisionRing.toRing
DivisionRing.toRatCast
Cauchy
instRatCast
ofRat_sub 📖mathematicalofRat
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Cauchy
instSubCauchy
CauSeq.const_sub
ofRat_zero 📖mathematicalofRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Cauchy
instZeroCauchy
zero_ne_one 📖cau_seq_zero_ne_one
mk_eq

CauSeq.Completion.Cauchy

Definitions

NameCategoryTheorems
commRing 📖CompOp
divisionRing 📖CompOp
5 mathmath: Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, PadicInt.coe_adicCompletionIntegersEquiv_apply, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
instNonTrivial 📖mathematicalNontrivial
CauSeq.Completion.Cauchy
Function.Injective.nontrivial
CauSeq.Completion.ofRat_injective

CauSeq.IsComplete

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete 📖mathematicalCauSeq
CauSeq.equiv
CauSeq.const

---

← Back to Index