| Name | Category | Theorems |
instAddCauchy 📖 | CompOp | 6 mathmath: ofRat_add, mk_add, Real.cauchy_add, Real.ofCauchy_add, Real.ringEquivCauchy_apply, Real.ringEquivCauchy_symm_apply_cauchy
|
instDivInvMonoid 📖 | CompOp | 2 mathmath: ofRat_div, Real.ofCauchy_div
|
instInhabitedCauchy 📖 | CompOp | — |
instIntCastCauchy 📖 | CompOp | 3 mathmath: Real.ofCauchy_intCast, Real.cauchy_intCast, ofRat_intCast
|
instInvCauchy 📖 | CompOp | 7 mathmath: ofRat_inv, Real.cauchy_inv, inv_mk, inv_zero, mul_inv_cancel, inv_mul_cancel, Real.ofCauchy_inv
|
instMulCauchy 📖 | CompOp | 8 mathmath: ofRat_mul, Real.ofCauchy_mul, mk_mul, mul_inv_cancel, inv_mul_cancel, Real.cauchy_mul, Real.ringEquivCauchy_apply, Real.ringEquivCauchy_symm_apply_cauchy
|
instNNRatCast 📖 | CompOp | 3 mathmath: Real.ofCauchy_nnratCast, Real.cauchy_nnratCast, ofRat_nnratCast
|
instNatCastCauchy 📖 | CompOp | 3 mathmath: Real.ofCauchy_natCast, Real.cauchy_natCast, ofRat_natCast
|
instNegCauchy 📖 | CompOp | 4 mathmath: Real.cauchy_neg, Real.ofCauchy_neg, mk_neg, ofRat_neg
|
instOneCauchy 📖 | CompOp | 5 mathmath: ofRat_one, mul_inv_cancel, inv_mul_cancel, Real.ofCauchy_one, Real.cauchy_one
|
instPowCauchyNat 📖 | CompOp | 1 mathmath: mk_pow
|
instRatCast 📖 | CompOp | 4 mathmath: ofRat_ratCast, ofRat_rat, Real.ofCauchy_ratCast, Real.cauchy_ratCast
|
instReprCauchy 📖 | CompOp | — |
instSMulCauchyOfIsScalarTower 📖 | CompOp | 1 mathmath: mk_smul
|
instSubCauchy 📖 | CompOp | 4 mathmath: Real.cauchy_sub, Real.ofCauchy_sub, ofRat_sub, mk_sub
|
instZeroCauchy 📖 | CompOp | 6 mathmath: Real.ofCauchy_zero, inv_zero, ofRat_zero, Real.cauchy_zero, mk_eq_zero, PadicSeq.eq_zero_iff_equiv_zero
|
mk 📖 | CompOp | — |
ofRat 📖 | CompOp | 15 mathmath: ofRat_div, ofRat_inv, ofRat_mul, ofRat_ratCast, ofRat_rat, ofRat_one, ofRat_add, ofRat_sub, ofRat_nnratCast, ofRat_zero, ofRat_injective, ofRatRingHom_apply, ofRat_intCast, ofRat_natCast, ofRat_neg
|
ofRatRingHom 📖 | CompOp | 1 mathmath: ofRatRingHom_apply
|