π Source: Mathlib/Algebra/Order/Chebyshev.lean
card_mul_sum_le_sum_mul_sum
card_smul_sum_le_sum_smul_sum
sum_mul_sum_le_card_mul_sum
sum_smul_sum_le_card_smul_sum
pow_sum_div_card_le_sum_pow
pow_sum_le_card_mul_sum_pow
sq_sum_le_card_mul_sum_sq
sum_div_card_sq_le_sum_sq_div_card
Antivary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
AntivaryOn.card_mul_sum_le_sum_mul_sum
antivaryOn
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MonovaryOn.sum_smul_sum_le_card_smul_sum
OrderDual.isOrderedAddCancelMonoid
OrderDual.instPosSMulMono
Monovary.monovaryOn
dual_right
AntivaryOn
SetLike.coe
Finset
Finset.instSetLike
Finset.card
nsmul_eq_mul
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Monovary
MonovaryOn.sum_mul_sum_le_card_mul_sum
monovaryOn
MonovaryOn
Set.Countable.exists_cycleOn
Finset.countable_toSet
Finset.card_range
Finset.sum_smul_sum_eq_sum_perm
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
sum_smul_comp_perm_le_sum_smul
Function.IsFixedPt.perm_pow
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Monoid.toNatPow
Finset.eq_empty_or_nonempty
zero_pow
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
zero_div
div_le_iffβ'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
NeZero.charZero_one
Finset.Nonempty.card_pos
zero_add
pow_one
pow_zero
Finset.sum_congr
one_mul
pow_succ
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Finset.sum_nonneg
mul_assoc
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
MonovaryOn.pow_leftβ
monovaryOn_self
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Nat.cast_nonneg'
sq
div_zero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
div_pow
div_le_div_iffβ
mul_left_comm
le_of_lt
---
β Back to Index