Documentation Verification Report

Chebyshev

πŸ“ Source: Mathlib/Algebra/Order/Chebyshev.lean

Statistics

MetricCount
Definitions0
Theoremscard_mul_sum_le_sum_mul_sum, card_smul_sum_le_sum_smul_sum, card_mul_sum_le_sum_mul_sum, card_smul_sum_le_sum_smul_sum, sum_mul_sum_le_card_mul_sum, sum_smul_sum_le_card_smul_sum, sum_mul_sum_le_card_mul_sum, sum_smul_sum_le_card_smul_sum, pow_sum_div_card_le_sum_pow, pow_sum_le_card_mul_sum_pow, sq_sum_le_card_mul_sum_sq, sum_div_card_sq_le_sum_sq_div_card
12
Total12

Antivary

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_sum_le_sum_mul_sum πŸ“–mathematicalAntivary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”AntivaryOn.card_mul_sum_le_sum_mul_sum
antivaryOn
card_smul_sum_le_sum_smul_sum πŸ“–mathematicalAntivary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Fintype.card
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MonovaryOn.sum_smul_sum_le_card_smul_sum
OrderDual.isOrderedAddCancelMonoid
OrderDual.instPosSMulMono
Monovary.monovaryOn
dual_right

AntivaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_sum_le_sum_mul_sum πŸ“–mathematicalAntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”nsmul_eq_mul
card_smul_sum_le_sum_smul_sum
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
card_smul_sum_le_sum_smul_sum πŸ“–mathematicalAntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLE
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Finset.card
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MonovaryOn.sum_smul_sum_le_card_smul_sum
OrderDual.isOrderedAddCancelMonoid
OrderDual.instPosSMulMono
dual_right

Monovary

Theorems

NameKindAssumesProvesValidatesDepends On
sum_mul_sum_le_card_mul_sum πŸ“–mathematicalMonovary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
β€”MonovaryOn.sum_mul_sum_le_card_mul_sum
monovaryOn
sum_smul_sum_le_card_smul_sum πŸ“–mathematicalMonovary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
AddMonoid.toNatSMul
Fintype.card
β€”MonovaryOn.sum_smul_sum_le_card_smul_sum
monovaryOn

MonovaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
sum_mul_sum_le_card_mul_sum πŸ“–mathematicalMonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”nsmul_eq_mul
sum_smul_sum_le_card_smul_sum
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
sum_smul_sum_le_card_smul_sum πŸ“–mathematicalMonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLE
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoid.toNatSMul
Finset.card
β€”Set.Countable.exists_cycleOn
Finset.countable_toSet
Finset.card_range
Finset.sum_smul_sum_eq_sum_perm
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
sum_smul_comp_perm_le_sum_smul
Function.IsFixedPt.perm_pow

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
pow_sum_div_card_le_sum_pow πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”Finset.eq_empty_or_nonempty
zero_pow
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
zero_div
div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
NeZero.charZero_one
Finset.Nonempty.card_pos
pow_sum_le_card_mul_sum_pow
pow_sum_le_card_mul_sum_pow πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”zero_add
pow_one
pow_zero
Finset.sum_congr
one_mul
pow_succ
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_assoc
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
MonovaryOn.sum_mul_sum_le_card_mul_sum
MonovaryOn.pow_leftβ‚€
monovaryOn_self
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Nat.cast_nonneg'
IsStrictOrderedRing.toZeroLEOneClass
sq_sum_le_card_mul_sum_sq πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”sq
Finset.sum_congr
MonovaryOn.sum_mul_sum_le_card_mul_sum
monovaryOn_self
sum_div_card_sq_le_sum_sq_div_card πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”Finset.eq_empty_or_nonempty
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
div_zero
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
div_pow
div_le_div_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
NeZero.charZero_one
Finset.Nonempty.card_pos
sq
mul_left_comm
mul_assoc
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
sq_sum_le_card_mul_sum_sq
le_of_lt

---

← Back to Index