Documentation Verification Report

CompleteField

๐Ÿ“ Source: Mathlib/Algebra/Order/CompleteField.lean

Statistics

MetricCount
DefinitionsConditionallyCompleteLinearOrderedField, toConditionallyCompleteLinearOrder, toField, cutMap, inducedAddHom, inducedMap, inducedOrderRingHom, inducedOrderRingIso, uniqueOrderRingHom, uniqueOrderRingIso
10
TheoremstoIsOrderedCancelAddMonoid, toIsStrictOrderedRing, toMulPosStrictMono, toPosMulStrictMono, toZeroLEOneClass, to_archimedean, coe_inducedOrderRingIso, coe_lt_inducedMap_iff, coe_mem_cutMap_iff, cutMap_add, cutMap_bddAbove, cutMap_coe, cutMap_mono, cutMap_nonempty, cutMap_self, exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self, inducedMap_add, inducedMap_inducedMap, inducedMap_inv_self, inducedMap_mono, inducedMap_nonneg, inducedMap_one, inducedMap_rat, inducedMap_self, inducedMap_zero, inducedOrderRingHom_toFun, inducedOrderRingIso_self, inducedOrderRingIso_symm, le_inducedMap_mul_self_of_mem_cutMap, lt_inducedMap_iff, mem_cutMap_iff, ringHom_monotone
32
Total42

ConditionallyCompleteLinearOrderedField

Definitions

NameCategoryTheorems
toConditionallyCompleteLinearOrder ๐Ÿ“–CompOp
18 mathmath: toZeroLEOneClass, LinearOrderedField.lt_inducedMap_iff, LinearOrderedField.inducedOrderRingIso_self, toPosMulStrictMono, toIsOrderedCancelAddMonoid, LinearOrderedField.inducedOrderRingHom_toFun, LinearOrderedField.le_inducedMap_mul_self_of_mem_cutMap, to_archimedean, LinearOrderedField.inducedMap_mono, LinearOrderedField.inducedMap_inv_self, LinearOrderedField.inducedOrderRingIso_symm, LinearOrderedField.inducedMap_nonneg, LinearOrderedField.coe_inducedOrderRingIso, LinearOrderedField.coe_lt_inducedMap_iff, LinearOrderedField.inducedMap_self, toIsStrictOrderedRing, LinearOrderedField.inducedMap_inducedMap, toMulPosStrictMono
toField ๐Ÿ“–CompOp
20 mathmath: toZeroLEOneClass, LinearOrderedField.lt_inducedMap_iff, LinearOrderedField.inducedOrderRingIso_self, toPosMulStrictMono, toIsOrderedCancelAddMonoid, LinearOrderedField.inducedOrderRingHom_toFun, to_archimedean, LinearOrderedField.inducedMap_one, LinearOrderedField.inducedMap_add, LinearOrderedField.inducedMap_inv_self, LinearOrderedField.inducedMap_zero, LinearOrderedField.inducedOrderRingIso_symm, LinearOrderedField.inducedMap_nonneg, LinearOrderedField.coe_inducedOrderRingIso, LinearOrderedField.coe_lt_inducedMap_iff, LinearOrderedField.inducedMap_self, toIsStrictOrderedRing, LinearOrderedField.inducedMap_inducedMap, toMulPosStrictMono, LinearOrderedField.inducedMap_rat

Theorems

NameKindAssumesProvesValidatesDepends On
toIsOrderedCancelAddMonoid ๐Ÿ“–mathematicalโ€”IsOrderedCancelAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
toField
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”โ€”
toIsStrictOrderedRing ๐Ÿ“–mathematicalโ€”IsStrictOrderedRing
Ring.toSemiring
CommRing.toRing
Field.toCommRing
toField
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”toIsOrderedCancelAddMonoid
toZeroLEOneClass
Field.toNontrivial
toPosMulStrictMono
toMulPosStrictMono
toMulPosStrictMono ๐Ÿ“–mathematicalโ€”MulPosStrictMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
toField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”โ€”
toPosMulStrictMono ๐Ÿ“–mathematicalโ€”PosMulStrictMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
toField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”โ€”
toZeroLEOneClass ๐Ÿ“–mathematicalโ€”ZeroLEOneClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
toField
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”โ€”
to_archimedean ๐Ÿ“–mathematicalโ€”Archimedean
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
toField
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
toConditionallyCompleteLinearOrder
โ€”archimedean_iff_nat_lt
toIsStrictOrderedRing
Mathlib.Tactic.Push.not_forall_eq
csSup_le
Set.range_nonempty
Set.forall_mem_range
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_csSup
Nat.cast_succ
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le

LinearOrderedField

Definitions

NameCategoryTheorems
cutMap ๐Ÿ“–CompOp
9 mathmath: cutMap_add, cutMap_coe, cutMap_nonempty, exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self, coe_mem_cutMap_iff, cutMap_self, cutMap_bddAbove, cutMap_mono, mem_cutMap_iff
inducedAddHom ๐Ÿ“–CompOp
1 mathmath: inducedOrderRingHom_toFun
inducedMap ๐Ÿ“–CompOp
13 mathmath: lt_inducedMap_iff, le_inducedMap_mul_self_of_mem_cutMap, inducedMap_one, inducedMap_add, inducedMap_mono, inducedMap_inv_self, inducedMap_zero, inducedMap_nonneg, coe_inducedOrderRingIso, coe_lt_inducedMap_iff, inducedMap_self, inducedMap_inducedMap, inducedMap_rat
inducedOrderRingHom ๐Ÿ“–CompOp
1 mathmath: inducedOrderRingHom_toFun
inducedOrderRingIso ๐Ÿ“–CompOp
3 mathmath: inducedOrderRingIso_self, inducedOrderRingIso_symm, coe_inducedOrderRingIso
uniqueOrderRingHom ๐Ÿ“–CompOpโ€”
uniqueOrderRingIso ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inducedOrderRingIso ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderRingIso
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompleteLinearOrderedField.toField
Distrib.toAdd
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
EquivLike.toFunLike
OrderRingIso.instEquivLike
inducedOrderRingIso
inducedMap
ConditionallyCompleteLinearOrder.toLinearOrder
โ€”โ€”
coe_lt_inducedMap_iff ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
ConditionallyCompleteLinearOrderedField.toField
inducedMap
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
โ€”Monotone.reflect_lt
inducedMap_mono
inducedMap_rat
exists_rat_btwn
lt_csSup_of_lt
cutMap_bddAbove
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
coe_mem_cutMap_iff
IsStrictOrderedRing.toCharZero
coe_mem_cutMap_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
cutMap
DivisionRing.toRatCast
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Field.toDivisionRing
โ€”Function.Injective.mem_set_image
Rat.cast_injective
cutMap_add ๐Ÿ“–mathematicalโ€”cutMap
Field.toDivisionRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Set
Set.add
โ€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.image_subset_iff
exists_rat_btwn
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Set.mem_setOf_eq
coe_mem_cutMap_iff
IsStrictOrderedRing.toCharZero
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_sub_cancel
Rat.cast_add
add_lt_add
cutMap_bddAbove ๐Ÿ“–mathematicalโ€”BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
cutMap
Field.toDivisionRing
โ€”exists_rat_gt
Set.forall_mem_image
LT.lt.le
LT.lt.trans'
cutMap_coe ๐Ÿ“–mathematicalโ€”cutMap
Field.toDivisionRing
DivisionRing.toRatCast
Set.image
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
โ€”โ€”
cutMap_mono ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
cutMap
โ€”Set.image_mono
LE.le.trans_lt'
cutMap_nonempty ๐Ÿ“–mathematicalโ€”Set.Nonempty
cutMap
Field.toDivisionRing
โ€”Set.Nonempty.image
exists_rat_lt
cutMap_self ๐Ÿ“–mathematicalโ€”cutMap
Field.toDivisionRing
Set
Set.instInter
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.range
DivisionRing.toRatCast
โ€”โ€”
exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self ๐Ÿ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
ConditionallyCompleteLinearOrderedField.toField
inducedMap
Set
Set.instMembership
cutMap
Field.toDivisionRing
โ€”lt_or_ge
Rat.cast_zero
coe_mem_cutMap_iff
IsStrictOrderedRing.toCharZero
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_lt_of_covariant_le
LT.lt.ne'
exists_rat_pow_btwn
ConditionallyCompleteLinearOrderedField.to_archimedean
two_ne_zero
LE.le.trans_lt
pow_two
Rat.cast_mul
lt_inducedMap_iff
lt_of_mul_self_lt_mul_selfโ‚€
IsOrderedRing.toMulPosMono
inducedMap_nonneg
LT.lt.le
mul_self_lt_mul_self
Nat.cast_zero
LT.lt.trans'
Rat.cast_pow
inducedMap_add ๐Ÿ“–mathematicalโ€”inducedMap
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompleteLinearOrderedField.toField
โ€”inducedMap.eq_1
cutMap_add
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
csSup_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
cutMap_nonempty
cutMap_bddAbove
inducedMap_inducedMap ๐Ÿ“–mathematicalโ€”inducedMap
ConditionallyCompleteLinearOrderedField.toField
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
โ€”eq_of_forall_rat_lt_iff_lt
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
ConditionallyCompleteLinearOrderedField.to_archimedean
coe_lt_inducedMap_iff
inducedMap_inv_self ๐Ÿ“–mathematicalโ€”inducedMap
ConditionallyCompleteLinearOrderedField.toField
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
โ€”inducedMap_inducedMap
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
ConditionallyCompleteLinearOrderedField.to_archimedean
inducedMap_self
inducedMap_mono ๐Ÿ“–mathematicalโ€”Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
inducedMap
โ€”csSup_le_csSup
cutMap_bddAbove
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
cutMap_nonempty
cutMap_mono
inducedMap_nonneg ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
ConditionallyCompleteLinearOrderedField.toField
inducedMap
โ€”LE.le.trans
Eq.ge
inducedMap_zero
inducedMap_mono
inducedMap_one ๐Ÿ“–mathematicalโ€”inducedMap
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ConditionallyCompleteLinearOrderedField.toField
โ€”Nat.cast_one
Rat.cast_one
inducedMap_rat
inducedMap_rat ๐Ÿ“–mathematicalโ€”inducedMap
DivisionRing.toRatCast
Field.toDivisionRing
ConditionallyCompleteLinearOrderedField.toField
โ€”csSup_eq_of_forall_le_of_forall_lt_exists_gt
cutMap_nonempty
cutMap_coe
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
le_of_lt
exists_rat_btwn
ConditionallyCompleteLinearOrderedField.to_archimedean
inducedMap_self ๐Ÿ“–mathematicalโ€”inducedMap
ConditionallyCompleteLinearOrderedField.toField
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
โ€”eq_of_forall_rat_lt_iff_lt
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
ConditionallyCompleteLinearOrderedField.to_archimedean
coe_lt_inducedMap_iff
inducedMap_zero ๐Ÿ“–mathematicalโ€”inducedMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompleteLinearOrderedField.toField
โ€”Nat.cast_zero
Rat.cast_zero
inducedMap_rat
inducedOrderRingHom_toFun ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ConditionallyCompleteLinearOrderedField.toField
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
OrderRingHom.instFunLike
inducedOrderRingHom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Field.toCommRing
AddMonoidHom.instFunLike
inducedAddHom
โ€”โ€”
inducedOrderRingIso_self ๐Ÿ“–mathematicalโ€”inducedOrderRingIso
OrderRingIso.refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompleteLinearOrderedField.toField
Distrib.toAdd
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
โ€”OrderRingIso.ext
inducedMap_self
inducedOrderRingIso_symm ๐Ÿ“–mathematicalโ€”OrderRingIso.symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
ConditionallyCompleteLinearOrderedField.toField
Distrib.toAdd
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
inducedOrderRingIso
โ€”โ€”
le_inducedMap_mul_self_of_mem_cutMap ๐Ÿ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Set
Set.instMembership
cutMap
Field.toDivisionRing
ConditionallyCompleteLinearOrderedField.toField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Preorder.toLE
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
inducedMap
โ€”exists_rat_pow_btwn
two_ne_zero
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_lt_of_covariant_le
LT.lt.ne'
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
LT.lt.le
pow_two
mul_self_le_mul_self
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
Nat.cast_zero
le_csSup
cutMap_bddAbove
coe_mem_cutMap_iff
IsStrictOrderedRing.toCharZero
lt_of_mul_self_lt_mul_selfโ‚€
lt_inducedMap_iff ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderedField.toConditionallyCompleteLinearOrder
inducedMap
DivisionRing.toRatCast
Field.toDivisionRing
ConditionallyCompleteLinearOrderedField.toField
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
โ€”coe_lt_inducedMap_iff
exists_rat_btwn
ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing
ConditionallyCompleteLinearOrderedField.to_archimedean
LT.lt.trans
mem_cutMap_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
cutMap
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
ConditionallyCompleteLinearOrderedField ๐Ÿ“–CompDataโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ringHom_monotone ๐Ÿ“–mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
โ€”monotone_iff_map_nonneg
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono

---

โ† Back to Index