Documentation Verification Report

Div

πŸ“ Source: Mathlib/Algebra/Order/Floor/Div.lean

Statistics

MetricCount
DefinitionsCeilDiv, ceilDiv, instCeilDiv, instFloorDiv, FloorDiv, floorDiv, instCeilDiv, instFloorDiv, instCeilDiv, instFloorDiv, Β«term_⌈/βŒ‰_Β», Β«term_⌊/βŒ‹_Β»
12
TheoremsceilDiv_gc, ceilDiv_nonpos, zero_ceilDiv, ceilDiv_apply, ceilDiv_def, coe_ceilDiv_def, coe_floorDiv, floorDiv_apply, floorDiv_def, support_ceilDiv_subset, support_floorDiv_subset, floorDiv_gc, floorDiv_nonpos, zero_floorDiv, ceilDiv_eq_add_pred_div, floorDiv_eq_div, ceilDiv_apply, ceilDiv_def, floorDiv_apply, floorDiv_def, ceilDiv_le_iff_le_mul, ceilDiv_le_iff_le_smul, ceilDiv_of_nonpos, ceilDiv_one, ceilDiv_zero, floorDiv_le_ceilDiv, floorDiv_of_nonpos, floorDiv_one, floorDiv_zero, gc_floorDiv_mul, gc_floorDiv_smul, gc_mul_ceilDiv, gc_smul_ceilDiv, le_floorDiv_iff_mul_le, le_floorDiv_iff_smul_le, le_smul_ceilDiv, smul_ceilDiv, smul_floorDiv, smul_floorDiv_le, zero_ceilDiv, zero_floorDiv
41
Total53

CeilDiv

Definitions

NameCategoryTheorems
ceilDiv πŸ“–CompOp
23 mathmath: ceilDiv_le_iff_le_smul, Pi.ceilDiv_def, Finsupp.coe_ceilDiv_def, ceilDiv_nonpos, Finsupp.ceilDiv_apply, Finsupp.ceilDiv_def, Nat.ceilRoot_def, Finsupp.support_ceilDiv_subset, gc_mul_ceilDiv, Nat.factorization_ceilRoot, floorDiv_le_ceilDiv, ceilDiv_gc, smul_ceilDiv, ceilDiv_one, ceilDiv_of_nonpos, zero_ceilDiv, zero_ceilDiv, gc_smul_ceilDiv, ceilDiv_zero, ceilDiv_le_iff_le_mul, Nat.ceilDiv_eq_add_pred_div, Pi.ceilDiv_apply, le_smul_ceilDiv

Theorems

NameKindAssumesProvesValidatesDepends On
ceilDiv_gc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
GaloisConnection
ceilDiv
SMulZeroClass.toSMul
β€”β€”
ceilDiv_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ceilDivβ€”β€”
zero_ceilDiv πŸ“–mathematicalβ€”ceilDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”

Finsupp

Definitions

NameCategoryTheorems
instCeilDiv πŸ“–CompOp
6 mathmath: coe_ceilDiv_def, ceilDiv_apply, ceilDiv_def, Nat.ceilRoot_def, support_ceilDiv_subset, Nat.factorization_ceilRoot
instFloorDiv πŸ“–CompOp
6 mathmath: floorDiv_def, floorDiv_apply, support_floorDiv_subset, Nat.factorization_floorRoot, coe_floorDiv, Nat.floorRoot_def

Theorems

NameKindAssumesProvesValidatesDepends On
ceilDiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
CeilDiv.ceilDiv
instAddCommMonoid
partialorder
smulZeroClass
instCeilDiv
β€”β€”
ceilDiv_def πŸ“–mathematicalβ€”CeilDiv.ceilDiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
partialorder
smulZeroClass
instCeilDiv
mapRange
zero_ceilDiv
β€”β€”
coe_ceilDiv_def πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
CeilDiv.ceilDiv
instAddCommMonoid
partialorder
smulZeroClass
instCeilDiv
β€”β€”
coe_floorDiv πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
FloorDiv.floorDiv
instAddCommMonoid
partialorder
smulZeroClass
instFloorDiv
β€”β€”
floorDiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
FloorDiv.floorDiv
instAddCommMonoid
partialorder
smulZeroClass
instFloorDiv
β€”β€”
floorDiv_def πŸ“–mathematicalβ€”FloorDiv.floorDiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
partialorder
smulZeroClass
instFloorDiv
mapRange
zero_floorDiv
β€”β€”
support_ceilDiv_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
CeilDiv.ceilDiv
Finsupp
instAddCommMonoid
partialorder
smulZeroClass
instCeilDiv
β€”zero_ceilDiv
support_floorDiv_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
FloorDiv.floorDiv
Finsupp
instAddCommMonoid
partialorder
smulZeroClass
instFloorDiv
β€”zero_floorDiv

FloorDiv

Definitions

NameCategoryTheorems
floorDiv πŸ“–CompOp
23 mathmath: floorDiv_nonpos, Nat.floorDiv_eq_div, floorDiv_of_nonpos, Finsupp.floorDiv_def, floorDiv_gc, zero_floorDiv, gc_floorDiv_mul, Finsupp.floorDiv_apply, floorDiv_zero, Pi.floorDiv_def, smul_floorDiv_le, floorDiv_le_ceilDiv, Finsupp.support_floorDiv_subset, smul_floorDiv, floorDiv_one, le_floorDiv_iff_mul_le, Nat.factorization_floorRoot, Finsupp.coe_floorDiv, Nat.floorRoot_def, zero_floorDiv, gc_floorDiv_smul, le_floorDiv_iff_smul_le, Pi.floorDiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
floorDiv_gc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
GaloisConnection
SMulZeroClass.toSMul
floorDiv
β€”β€”
floorDiv_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
floorDivβ€”β€”
zero_floorDiv πŸ“–mathematicalβ€”floorDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”

Nat

Definitions

NameCategoryTheorems
instCeilDiv πŸ“–CompOp
3 mathmath: ceilRoot_def, factorization_ceilRoot, ceilDiv_eq_add_pred_div
instFloorDiv πŸ“–CompOp
3 mathmath: floorDiv_eq_div, factorization_floorRoot, floorRoot_def

Theorems

NameKindAssumesProvesValidatesDepends On
ceilDiv_eq_add_pred_div πŸ“–mathematicalβ€”CeilDiv.ceilDiv
instAddCommMonoid
instPartialOrder
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
instCeilDiv
β€”β€”
floorDiv_eq_div πŸ“–mathematicalβ€”FloorDiv.floorDiv
instAddCommMonoid
instPartialOrder
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
instFloorDiv
β€”β€”

Pi

Definitions

NameCategoryTheorems
instCeilDiv πŸ“–CompOp
2 mathmath: ceilDiv_def, ceilDiv_apply
instFloorDiv πŸ“–CompOp
2 mathmath: floorDiv_def, floorDiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ceilDiv_apply πŸ“–mathematicalβ€”CeilDiv.ceilDiv
addCommMonoid
partialOrder
smulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
instCeilDiv
β€”β€”
ceilDiv_def πŸ“–mathematicalβ€”CeilDiv.ceilDiv
addCommMonoid
partialOrder
smulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
instCeilDiv
β€”β€”
floorDiv_apply πŸ“–mathematicalβ€”FloorDiv.floorDiv
addCommMonoid
partialOrder
smulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
instFloorDiv
β€”β€”
floorDiv_def πŸ“–mathematicalβ€”FloorDiv.floorDiv
addCommMonoid
partialOrder
smulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
instFloorDiv
β€”β€”

(root)

Definitions

NameCategoryTheorems
CeilDiv πŸ“–CompDataβ€”
FloorDiv πŸ“–CompDataβ€”
Β«term_⌈/βŒ‰_Β» πŸ“–CompOpβ€”
Β«term_⌊/βŒ‹_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ceilDiv_le_iff_le_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
CeilDiv.ceilDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”ceilDiv_le_iff_le_smul
ceilDiv_le_iff_le_smul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
CeilDiv.ceilDiv
SMulZeroClass.toSMul
β€”gc_smul_ceilDiv
ceilDiv_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
CeilDiv.ceilDivβ€”CeilDiv.ceilDiv_nonpos
ceilDiv_one πŸ“–mathematicalβ€”CeilDiv.ceilDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulActionWithZero.toSMulWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”eq_of_forall_ge_iff
zero_lt_one'
IsOrderedRing.toZeroLEOneClass
NeZero.one
one_smul
ceilDiv_zero πŸ“–mathematicalβ€”CeilDiv.ceilDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”ceilDiv_of_nonpos
floorDiv_le_ceilDiv πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
FloorDiv.floorDiv
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CeilDiv.ceilDiv
β€”le_or_gt
floorDiv_of_nonpos
ceilDiv_of_nonpos
le_of_smul_le_smul_left
LE.le.trans
smul_floorDiv_le
le_smul_ceilDiv
floorDiv_of_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
FloorDiv.floorDivβ€”FloorDiv.floorDiv_nonpos
floorDiv_one πŸ“–mathematicalβ€”FloorDiv.floorDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulActionWithZero.toSMulWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”eq_of_forall_le_iff
zero_lt_one'
IsOrderedRing.toZeroLEOneClass
NeZero.one
one_smul
floorDiv_zero πŸ“–mathematicalβ€”FloorDiv.floorDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”floorDiv_of_nonpos
gc_floorDiv_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
GaloisConnection
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
FloorDiv.floorDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
β€”gc_floorDiv_smul
gc_floorDiv_smul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
GaloisConnection
SMulZeroClass.toSMul
FloorDiv.floorDiv
β€”FloorDiv.floorDiv_gc
gc_mul_ceilDiv πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
GaloisConnection
CeilDiv.ceilDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”gc_smul_ceilDiv
gc_smul_ceilDiv πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
GaloisConnection
CeilDiv.ceilDiv
SMulZeroClass.toSMul
β€”CeilDiv.ceilDiv_gc
le_floorDiv_iff_mul_le πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
FloorDiv.floorDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
β€”le_floorDiv_iff_smul_le
le_floorDiv_iff_smul_le πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
FloorDiv.floorDiv
SMulZeroClass.toSMul
β€”gc_floorDiv_smul
le_smul_ceilDiv πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
SMulZeroClass.toSMul
CeilDiv.ceilDiv
β€”ceilDiv_le_iff_le_smul
le_rfl
smul_ceilDiv πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CeilDiv.ceilDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
SMulWithZero.toSMulZeroClass
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulActionWithZero.toSMulWithZero
SMulZeroClass.toSMul
β€”eq_of_forall_ge_iff
smul_floorDiv πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
FloorDiv.floorDiv
NonUnitalNonAssocSemiring.toAddCommMonoid
SMulWithZero.toSMulZeroClass
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulActionWithZero.toSMulWithZero
SMulZeroClass.toSMul
β€”eq_of_forall_le_iff
smul_floorDiv_le πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
SMulZeroClass.toSMul
FloorDiv.floorDiv
β€”le_floorDiv_iff_smul_le
le_rfl
zero_ceilDiv πŸ“–mathematicalβ€”CeilDiv.ceilDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”CeilDiv.zero_ceilDiv
zero_floorDiv πŸ“–mathematicalβ€”FloorDiv.floorDiv
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”FloorDiv.zero_floorDiv

---

← Back to Index